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Abstract  
 

Cancer remains one of the global leading causes of death and 

various vaccines have been developed over the years against it, 

including cell-based, nucleic acid-based, and viral-based cancer 

vaccines. Although many vaccines have been effective in in vivo 

and clinical studies and some have been FDA-approved, there 

are major limitations to overcome: (1) developing one universal 

vaccine for a specific cancer is difficult, as tumors with different 

antigens are different for different individuals, (2) the tumor 

antigens may be similar to the body’s own antigens, and (3) there 

is the possibility of cancer recurrence. Therefore, developing 

personalized cancer vaccines with the ability to distinguish 

between the tumor and the body’s antigens is indispensable. This 

paper provides a comprehensive review of different types of 

cancer vaccines and highlights important factors necessary for 

developing efficient cancer vaccines. Moreover, the application 

of other technologies in cancer therapy is discussed. Finally, 

several insights and conclusions are presented, such as the 

possibility of using cold plasma and cancer stem cells in 

developing future cancer vaccines, to tackle the major limitations 

in the cancer vaccine developmental process. 
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Introduction  
 

Vaccines have been used to protect human health against 

infectious diseases since their first discovery in the late 1700s 

[1]. The recent success of vaccines against the coronavirus 

disease is encouraging researchers to extend the underlying 

concepts to treat cancers [2,3]. Active immunotherapy or 

vaccination is one of the important aspects of efficient tumor 

eradication by therapeutic cancer vaccines that can be stimulated 

and enhanced in two major ways: (1) using nonspecific 

proinflammatory molecules and adjuvants to improve the 

antitumor immune response already present in the body or (2) 

provoking a new immune response against specific tumor 

antigens in the host [4]. The desired tumor antigens and 

adjuvants are usually delivered together to stimulate adaptive 

immune systems, aiming to accomplish the optimal activation of 

dendritic cells (DCs) and durable responses from effector T cells 

[5]. Innate immune cells, such as natural killer (NK) cells and 

phagocytes, also play essential roles in tumor recognition and 

inhibition [6]. However, the immunosuppressive tumor 

microenvironment (TME) is one of the key obstacles to tumor-

infiltrating immune cells and immunotherapies. The combination 

of therapeutic cancer vaccines and immune checkpoint inhibitors 

has become the emerging approach to enhance patients’ response 

rates and survival [7]. The efficacy of cancer vaccines is still 

under scrutiny in numerous clinical trials [8]. In this review, we 

explore the mechanism of the cancer immune cycle in the TME 

and analyze the effectiveness and limitations of major cancer 

vaccine platforms. Further, we provide new insights for 

forthcoming cancer vaccines to be more efficient. 
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Tumor Microenvironment and Cancer Vaccine 

Mechanisms  
 

The TME contains a plethora of immune cells, such as 

monocytes, macrophages, natural killer cells (NKs), dendritic 

cells (DCs), lymphocyte B cells, and lymphocyte T cells (CD4+ 

and CD8+) that play key role in the antigen-presentation process 

and cancer immune cycle that can lead to tumor progression; 

therefore, targeting the TME and its components is considered a 

major mechanism for effective cancer vaccines [5,9-11]. 

Macrophages, B cells, and DCs in the TME are some examples 

of the cells called antigen-presenting cells (APCs). These cells 

promote antigen-specific immune cell interaction and activation 

(called priming process) by taking up the antigens originating 

either from vaccine injections through various administration 

routes (subcutaneous, intradermal, or intramuscular) or from 

dead cancer cells. The APCs then make the antigens present on 

the major histocompatibility complex (MHC) class I or II [12-

14] (in humans, the human leukocyte antigen (HLA) is the MHC 

system [15]). This is followed by APC migrations from the TME 

to the lymph nodes to activate the effector T cells (CD4+ or 

CD8+) [16-18]. Lymph nodes are one of the secondary lymphoid 

organs (SLOs) that provide a three-dimensional structure for 

immune cells and enhance the interactions between antigen-

loaded APCs and effector T cells to activate T cells and produce 

an effective immune response. Within the lymph nodes, the 

mature APCs can activate the effector T cells by presenting the 

MHC-antigen complexes to the effector T cells. This is followed 

by the infiltration of the activated effector T cells into the TME, 

where the T cells can recognize the targeted cancer cells and kill 

them [19-21]. Primary (quiescent) B cell follicles in SLOs 

(called follicular B cells) become activated upon antigen binding 

to the primary follicles; following activation, primary follicular 

B cells turn into the secondary follicles, containing a central 

germinal center (GC) full of B cell blasts, and with antibody 

maturation, these B cell blasts undergo several phases and 

processes pertinent to antibody maturation. These steps lead to 

the differentiation of lymphocytes into effector T (Teff) cells and 

B memory cells and in this way, their migrations into the TME is 

facilitated, leading to the eradication of the tumor cells [5,22-30]. 
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However, based on studies on the TME, the generation of 

antitumor defenses occur not only in SLOs, but also directly 

within SLO-like aggregations called tertiary lymphoid structures 

(TLS) [31] that develop in the TME through cytokine 

accumulations, including CXCL13, RANKL, and interleukin 

(IL)-7. These structures interact with lymphoid tissue-inducer 

cells (LTi), as well as other cells, specifically DCs, NKs, or 

CD8+ T cells, leading to the secretion of factors that are essential 

for high endothelial venule (HEV) formation (which mediate 

lymphocyte trafficking to lymph nodes), immune cell 

recruitment, and cell retention. Together, these aforementioned 

factors recruit and activate the LTi cells [31-40]. All these 

stages, from antigen absorption to cancer cell death, are 

considered as parts of the cancer immune cycle that will be 

discussed in detail in the following section. 

 

Among the various APCs present in the TME, DCs are the most 

potent APC compared with B cells and macrophages. These cells 

mediate the antigen priming-related processes through two 

general mechanisms: canonical (cross-antigen presentation) and 

non-canonical (cross-antigen dressing) pathways [41,42]. The 

canonical pathways are more commonplace and are based on the 

type of the antigenic proteins (exogenous/endogenous). APCs 

(like DCs) can drive the canonical antigen presentation 

mechanism via two major pathways: (1) the cytosolic or 

proteasome degradation path (specified for endogenous protein 

presentation), during which the endogenous antigenic proteins, 

with either a proteosome or a phagosome origin, are cleaved by 

the cytosolic proteasomes of the DCs to generate peptide 

fragments, which then become presented by MHC-I molecules 

and activate the effector T cells against tumor cells, in particular 

antigen-specific CD8+ cytotoxic T lymphocytes (CTLs) [43-46], 

or (2) the vacuolar or endocytosis path (specified for exogenous 

antigenic protein presentation), during which DCs take up the 

exogenous antigenic proteins via the endocytosis process to form 

special vesicular structures called endosomes, which will then be 

fused with lysosomes, where the lysosomes’ low pH degrades 

these antigens to peptide fragments, which are then presented on 

MHC-II molecules, and activate the CD4+ T cells, leading to 

CTL activation, function, and survival [13,23,41,47-55]. Apart 



Prime Archives in Molecular Biology: 2nd Edition 

6                                                                                www.videleaf.com 

from the above-mentioned canonical pathways, several papers 

have demonstrated the presence of non-canonical/cross-dressing 

pathways through which the APCs such as DCs do not present 

the antigen themselves. Instead, the antigen–MHC complexes 

from the other adjacent DCs or tumor cells (donor cells) get 

transferred to the APCs, such as DCs (receiver cells), though 

various mechanisms, including trogocytosis, exosome uptake, 

and tunneling nanotubes [49,56-59], and activate the related 

effector T cells without further antigen processing stages [60-

66]. These processes are shown in Figure 1. 

 

 
 

Figure 1: APC presentation mechanisms. tumor microenvironment and its 

components: TME contains a wide range of antigen cross-presentation 

processes that can be mediated by dendritic cells either through the 

canonical/cross-presentation pathways (A), or through the non-canonical/cross-

dressing path (B). The cross-presentation mechanisms are mediated in two 

ways: cytosolic or proteosome degradation (A-1) and through the vacuolar 

pathway (A-2). In the cytosolic pathway, antigens that stem from either 

endosome or phagosome structures move toward the cytosol, forming acidic 

cytosolic proteosomes that cleave the antigens into shorter peptides. These 

peptides have two fates: (1) they are transported to the endoplasmic reticulum 

(ER) for further modifications. The modified antigenic peptides are then loaded 

on MHC class I molecules and move to the cell surface. (2) the cleaved 

peptides return to phagosomes/endosomes prior to loading on the MHC I and 

moving to the cell surface. In the vacuolar pathway, the aforementioned events 

related to antigen loading on MHC class I occur in the phagosomes or 

endosomes, which is followed by the moving of the antigen-loaded APCs 

(DCs) toward the secondary lymphoid organ (SLO) to activate T cells 

[13,41,49-53]. In the non-canonical/cross-dressing path, the antigen–MHC 

complex is formed on another cell and is then transformed to the APCs, such as 

DCs, and the DCs would finally be able to activate the related effector T cell 
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via different pathways: trogocytosis (B-1), exosome uptake (B-2), and 

tunneling nanotubes (B-3) [59,60,64-67]. In Trogocytosis, the membrane patch, 

including the plasma membrane and cytosol from one cell (donor), is 

transformed to the other cell (trogocytic) [58,59]; exosome uptake by APCs 

depends on the ability of the exosomes (small membrane-based vesicles formed 

during the endocytosis process) to transfer particular materials (that can not 

only be further degraded and reprocessed by APCs for presentation on the 

MHC molecules, but can also be considered as functional MHC–peptide 

complexes [59,68]); the tunneling nanotubes are long protrusions derived from 

cell membranes that not only facilitate the exchange of cell surface molecules 

and cytoplasmic contents but also can mediate cross-dressing between remote 

DCs through the transferring of MHC molecules between distant cells [59,69]. 

 

Cancer Immune Cycle  
 

The cancer immune cycle includes a series of repeated and 

amplified phases, each of which are mediated by specific 

cytokines and chemokines which will lead to effective anti-

cancer immune response and cancer cell death. Theses stages are 

as follows: (1) In the first step, the neoantigens that were 

generated during the tumor formation process are released from 

the dead tumor cells, which are then carried by the DCs to the 

adjacent draining lymph node (DLN). (2) The second stage starts 

with DCs presenting the acquired antigen to T cells through 

MHC-I and MHC-II molecules to form the MHC-I and MHC-II–

antigen complexes, through the cross-presentation pathways 

discussed earlier. (3) Effector T cells can then recognize the 

antigen and become activated. (4) Antigen-recognizing tumor-

specific T cells present in the DLN, express specific chemokine 

receptors as well as cell adhesion molecules required for the 

migration of T cells and their infiltration into the tumor tissue. 

By virtue of these expressed molecules, T cells leave the DLN 

and move toward the tumor tissue via the blood stream. (5) This 

is followed by T cell infiltration into the tumor tissue and (6) the 

recognition and binding of the MHC-I–antigen complex by 

virtue of the T cell receptor (TCR), which stimulates the 

secretion of various cytokines from the DCs that finally activate 

the T cells. (7) These processes work together to eventually kill 

the cancer cell [67,70] through various mechanisms, including 

direct tumor lysis and degranulation [71], antibody-dependent 

cellular cytotoxicity [72], and/or complement-dependent 

cytotoxicity [73-75]; however, a new pathway for the cancer-
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killing action of the T cells have been reported recently, which is 

independent of the antigen presentation by the MHC-I and its 

recognition by T cells [76]. Considering that additional 

neoantigens are released upon cancer cell death, causing the 

immune reaction and continuing the cycle again from the first 

phase where the neoantigens are upregulated by the cytokines, 

this mechanism is named cancer immune cycle, the steps of 

which are shown in Figure 2 in more detail. The cancer immune 

cycle becomes malfunctioned in cancer patients, as at least one 

of these steps is defective [67,77]. With this in mind, one of the 

effective ways to treat cancers would be to develop therapeutic 

vaccines that can target the cytokines in the cancer immune cycle 

(Figure 2). 

 

 
 
Figure 2: Caner immune cycle phases and regulation. Cancer immune cycle 

phases are regulated by a wide spectrum of cytokines and chemokines, some of 

which stimulate the cancer immune cycle to kill the cancer cells, whereas some 

cytokines act as inhibitors and down regulate the processes. The stimulatory 

cytokines work together to mediate the T cell activation. Activated T cells go 

the TME and induce tumor killing. Each phase is regulated by a wide range of 

cytokines and other molecular factors, as shown in green for inducers and red 

as inhibitors. 
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Escaping from the Cancer Immune Cycle  
 

The host immune system constitutes a surveillance part and a 

protective part; the immune surveillance system constantly 

inspects the body and boosts antitumor immune responses in 

order to identify and destroy any existent tumor cells and finally 

to prevent cancer progression [78-81]. In general, cancer cells 

undergo various genetic and epigenetic modifications, leading to 

the generation of specific antigens; these antigens then stimulate 

T cells to recognize and kill cancer cells; however, as tumor cells 

grow, they start to develop mechanisms known as “cancer 

immunoediting” to escape this host immune surveillance system; 

thus, the immune system is not able to eliminate these cancer 

cells [79,82,83]. On the other hand, looking at the protective part 

of a normal immune system, it consists of specific protein 

molecules called “immune checkpoints” that are present on the 

surface of immune cells (including T cells), and their 

corresponding ligand receptors, which are present on the cancer 

cells. These immune checkpoints induce inhibitory signals (using 

the mono-tyrosine-based signaling motifs, in particular, 

immunoreceptor tyrosine-based inhibitory and switch motifs) 

that prevent the generation of any strong immune response 

signals that destroy healthy cells in the body. In this way, 

immune checkpoints tend to protect normal cells [84-86]. PD-1, 

CTLA-4, LAG3, TIM3, BTLA, and TIGIT are some of the 

common immune checkpoints that mediate tumor cell 

recognition by T cells; when the immune checkpoint proteins 

present on T cells’ surfaces recognize and bind to the tumor 

cells’ receptors, they send an “off” signal to the T cells and 

hence prevent the eradication of cancer cells by the immune 

system. With this in mind, some cancer cells tend to facilitate 

cancer growth and metastasis by upregulating negative signals 

via cell surface immune checkpoint molecules and inhibiting T 

cell activations [87,88], while some other tumor cells may 

activate immunosuppressive leukocytes (such as eosinophils) to 

create a TME that is unable to respond to antitumor immune 

molecules well [89]. Moreover, some tumor-intrinsic genes, 

including YTHDF1, degrade the MHC-I complex molecules, 

resulting in immune evasion [90]. According to the mechanisms 

of action of the cancer vaccines as well as the cancer immunity 
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cycle discussed earlier, some of the key factors for a successful 

cancer vaccine design are the selection of the appropriate tumor 

antigen to stimulate effective T cells, the achievement of a 

sufficient antigen concentration in APCs in such a way as to 

activate them, as well as the inducement of durable 

immunogenic responses by activating the effector T cells, i.e., 

CD4+ and CD8+ [23]. In this respect, the selection of the right 

antigen along with its delivery method would be of high 

importance, which will be discussed in detail in the following 

subsections. 

 

Tumor Antigen Classifications  
 

Tumor antigens are any antigenic substances generated in tumor 

cells that trigger an immunogenic response and serve as 

biomarkers for tumor recognition that can be used to develop 

novel therapeutic cancer vaccines. Tumor antigens can appear in 

phases pertinent to protein synthesis and degradation [82,91]. On 

the basis of the expression patterns of the HLAs, tumor antigens 

can be classified into two general groups: tumor-associated 

antigens (TAAs), in which the antigen is presented by the HLAs 

that are only expressed on tumor cells (mainly HLA class I), and 

tumor-specific antigens (TSAs, or neoantigens), in which the 

antigen is presented by the HLAs that are expressed not only on 

cancer cells, but also to normal cells [28,92]. 

 

Based on the molecular structure and sources of the antigens, 

TAAs can fall into one of these categories: differentiated (tissue-

lineage), oncofetal, cancer–testis, aberrantly glycosylated and 

expressed, overexpressed, as well as oncoviral antigens. On the 

other hand, TSAs are classified, according to the frequency of 

observations, into shared (public) and personalized (private) 

neoantigens; shared (public) neoantigens arise from alterations 

that occur specifically in tumors which are observed across other 

patients/different malignancies, while their personalized (private) 

counterparts are those originating from tumor-specific alterations 

that are less likely to occur across other 

populations/malignancies; thus, personalized neoantigens are 

patient-specific. To date, a few numbers of public neoantigens 

have been recognized, whereas the private neoantigens usually 
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originate from non-recurrent driver/passenger mutations and 

comprise most of the known neoantigens [25,26,54,93-96]. 

Furthermore, based on the source from which the antigen is 

derived, the antigen can be canonical (derived from the protein-

coding genes), or non-canonical (derived from non-protein 

coding genes); in the canonical antigen, the antigen is expressed 

within the open reading frames (ORFs) of the protein-coding 

genes [93], such as the overexpression of numerous cancer-

related genes [60,65,94], including p53 [97-100], cancer/testis 

antigens (CTAs) [100,101], and the human telomerase reverse 

transcriptase [102,103]. Non-canonical antigens are expressed 

outside of the ORFs [104], and can stem from alterations of the 

antigen at various levels, such as genomic, epigenomic, 

proteomic, transcriptomic, translational, and antigen-processing 

levels (intronic retention, alternative splicing, codon read-

through, and noncanonical/non-AUG translation initiation levels) 

[93,100,105]. The tumor antigen classifications along with their 

properties are summarized in Figure 3. 

 

 
 
Figure 3: Tumor antigen classifications. In general, tumor antigens are 

classified as tumor-specific and tumor-associated antigens, each divided into 

several categories. Each category is compared in terms of (1) tumor specificity 

(refers to the degree to which a particular immune response targets and 

interacts specifically with tumor cells or its antigens while sparing normal cells; 

hence, a high tumor specificity is desired), (2) central tolerance (mechanisms 

by which the immune system recognizes the self-antigens from cancer antigens 

and eliminates cancer cells during their development within the body without 

mounting immune responses against the self-antigens. Thus, a high central 
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tolerance is desired, as it means that the immune system exhibits a strong level 

of tolerance towards self-antigens, including those present on normal cells and 

tissues, and can recognize them better), (3) immunogenicity (indicates the 

ability of cancer cells to stimulate an immune response from the host immune 

system. This immune response can involve the activation of immune cells, and 

the production of antibodies against tumor-specific or tumor-associated 

antigens; so, high immunogenicity is a desired factor), and (4) prevalence (this 

shows how common or rare the occurrence of tumor antigens is in patients) 

[25,26,54,93-96]. 

 

Apart from the type of the antigen, determining an efficacious 

method for the delivery of the tumor antigen to the APCs would 

not only make antigen-mediated APC targeting more selective 

and induce T cell activations, but it would also decrease systemic 

toxicity. Since different types of antigens have various physical 

properties, inducing an optimum immune response would 

depend mostly on the selection of an appropriate delivery system 

[23]. Some of the major delivery methods are using cells, 

antigens, peptides, nucleic acids, and viral-based ones, each of 

which will be discussed in detail in the following sections. 

 

Different Cancer Vaccine Platforms  
Peptide-Based Vaccines  
 

In peptide-based cancer vaccines, usually 20–30 amino acids are 

used to make a wide range of peptides for activating the immune 

system of patients, enabling them to recognize and kill the tumor 

cells by enhancing the T cell-mediated immune responses 

specific to a particular tumor, i.e., CD8+ and CD4+ T cells via 

the MHC class I and II molecules, respectively [106,107]. These 

peptides usually belong to one of the TAAs or TSAs (including 

cancer/testis antigens and neoantigens) that are used for 

designing personalized vaccines. Peptide-based cancer vaccines 

can not only activate both B cells and T cell-mediated immune 

responses, but also induce long-lasting tumor-killing effects 

[108]; however, to elicit an efficient antitumor T cell response, 

cancer vaccines usually deliver a mix of tumor antigen peptides 

including TAAs and TSAs. The identification and discovery of 

tumor antigen peptides have been discussed in other reviews 

[54,93,109]. Synthetic long peptides (SLPs) are stronger than 

short peptides in activating T cell responses because SLPs need 

to be processed by the APCs and can activate both cytotoxic 
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CD8+ T cell and CD4+ T helper cell responses [110,111]. Due 

to low immunogenicity, peptide-based vaccines are usually 

formulated with immune adjuvants. Adjuvants have been 

licensed by the FDA and EMA for humans, include aluminum 

salts, MF59, adjuvant systems, and CpG 1018 [112]. Other 

adjuvants under investigation are polyinosinic-polycytidylic acid 

stabilized with polylysine and carboxymethylcellulose (poly-

ICLC), glucopyranosyl lipid A, Imidazoquinolines, CpG 

oligodeoxynucleotides, cyclic dinucleotides, etc. [113]. To 

further increase the immunogenicity of peptide antigens, 

heteroclitic peptides, which are modified versions of peptides 

that have been altered (by replacing amino acid residues in the 

epitope sequence that have similar biochemical properties, 

overall structure, and function compared to the original amino 

acid sequences; this is known as conservative amino acid 

substitution) to enhance their binding affinity to the MHC 

molecules; in this way, they can induce an enhanced immune 

response against specific antigens, making heteroclitic peptides a 

potential tool in vaccine development and immunotherapy for 

diseases such as cancer [114-117]. Considering the short half-life 

and poor stability of the free peptides in the body, tumor antigen 

peptides are usually incorporated into other delivery systems. 

Poly lactic-co-glycolic acid (PLGA) nanoparticles and liposomes 

are two representative delivery systems of antigen peptides and 

adjuvants because of their proven safety [118,119]. A 

comparative study by Varypataki, Jiskoot et al. showed that 

SLP-loaded PLGA nanoparticles and cationic liposomes are 

more potent for stimulating the T cell responses in vivo than 

squalene or Montanide-based emulsions [119]. Both vehicles can 

protect the peptides from degradation and promote dendritic cell 

uptake and lymph node transport. 

 

In the last decade, liposomal vaccines evaluated in clinical trials 

include Tecemotide, DepoVax, ISCOMATRIX, Lipo-MERIT, 

etc.; however, none of them improved the patients’ survival 

[120,121]. In addition to synthetic nanoparticles, dendritic cell-

derived exosomes (DEXs) could play an important role in tumor 

immunology by transferring MHC/peptide complexes to other 

immune cells and stimulating T and NK cells directly or 

indirectly [122,123]. DEXs loaded with antigen peptides have 
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been assessed as cancer vaccines in clinical trials, but failed to 

generate adequate adaptive immunity in patients with advanced 

cancer [123]. Nevertheless, DEXs still hold the promise of being 

a part of combination therapies. 

 

Recombinant (Pathogen) Vaccines: Viral and Bacterial-

Based Vaccines  
 

There are three major classes of recombinant viral/bacterial 

vaccines: (1) inactivated vaccines (that use killed virus/bacteria 

that has been cultured in the lab) [124,125], (2) live attenuated 

vaccines (in which the virus/bacteria is being weakened but not 

completely killed) [126,127], and (3) subunit vaccines (in which 

a portion of the virus/bacteria-like protein is used) 

[126,128,129]. All recombinant vaccines are based on 

administrating the recombinant genes (such as genes encoding 

TAAs, cytokines, or costimulatory molecules that are inserted 

into the viral/bacterial genome) using recombination/selection 

methods into APCs to stimulate the appropriate antitumor 

immune responses and by engaging both innate and adaptive 

immune systems. Viral/bacterial-based vaccines can provide 

effective and long-lasting immune responses [130-135]. These 

vaccines target the APCs and initiate immune responses through 

two major mechanisms: (1) the indirect infection of the APCs, 

which works through cellular damage mediated by viral infection 

to send danger signals and as well as costimulatory molecules to 

activate the APCs of bone marrow [130,136,137], and (2) the 

direct infection of the APCs, which is based on the processing of 

the antigens in the MHC pathways. The latter mechanism 

facilitates recombinant viral vaccine modifications for enhancing 

the antigen presentation [130,138,139]. Some of these 

modifications are based on expressing the genes encoding the 

minimal level of MHC class I-restricted peptides [140], inserting 

endosomal/lysosomal sorting signals into the gene encoding 

antigen [12,141], as well as using poxviruses to activate T cells 

[142-144], or to be used as a vector to carry specific 

costimulatory molecules or cytokines [145]. One of the recent 

effective bacterial-based cancer vaccines was developed by Wu 

et al.; these researchers used attenuated flagellated bacteria 

(strain of Salmonella typhimurium) coated with positively 
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charged dendrimer nanoparticles with the ability to bind to 

negatively charged antigens, and the bacterial had become less 

immunogenic via gene mutations [146]. 

 

Cell-Based Vaccines: Dendritic Cells (DCs), Stem Cells, 

and Chimeric Antigen Receptor (CAR) T Cell Therapy  
 

Therapeutic cell-based vaccines are based on the in vitro 

activation of the APCs (like NK cells or DCs) by the viral 

peptides, genes, or by using genetically modified tumor cells 

(killed tumor cells). In this regard, the cell-based vaccines can be 

classified as tumor cell vaccines and immune cell vaccines [147]. 

In the tumor cell vaccines, the whole tumor cell is used as the 

source of the vaccine, which contains whole TAAs, including the 

CD4+ and Cd8+ T cells’ epitopes. Whole-cell cancer vaccines 

are currently in clinical trials. Using whole tumor cells as a 

vaccine that has all the possible antigens in it rather than 

protein/peptide tumor antigens not only eliminates the need to 

identify the ideal target antigen; in addition, several tumor 

antigens can be targeted at once, which would then induce 

further immune responses to more tumor cells [148,149]. 

However, there is still a need for a stimulus/stimulatory factor(s) 

to provoke the antigen absorption process by the APCs to recruit 

cells from innate and adaptive immune systems. With this in 

mind, cell-based vaccines have been modified either genetically 

or via irradiation in such a way as to be able to secrete cytokines 

without further proliferation in the host [147,150,151]. Most of 

the recent developed cancer vaccines are based on using whole 

cells like DCs, which affect the function of the cells in the 

immune system. The importance of DCs in antigen uptake and 

presentation processes, as well as T cell activations, which are 

mediated by a wide spectrum of receptors present on DCs’ 

surfaces, including those for antigen uptake, antigen 

presentation, costimulatory molecules, cytokines receptors, 

receptors for environmental sensors, cytokine production-related 

receptors, as well as chemokine receptors, have turned DCs into 

the most commonplace immune cells used in developing 

immune cell-based cancer vaccines [12,22,39,49,147,152-154]. 

To improve the efficacy of DCs in antigen absorption and T cell 

activation, researchers have started to use stem cells to develop 
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better cell-based cancer vaccines. The application of stem cells 

in the realm of cancer vaccines started with embryonic stem cells 

(ESCs) [155]; considering that ESCs are usually obtained from 

an unrelated donor, they express a mismatched MHC and minor 

histocompatibility (miH) antigens (which are peptides derived 

from normal self-proteins that, in humans, are presented by 

HLA), and if transplanted in the host, they will cause 

alloimmune responses [156-158]. Although ESCs express a low 

amount of HLA-I [159-163] and almost no HLA-II [162-165] 

and costimulatory molecules [162,164,165], this amount is 

sufficient to stimulate the cytotoxic T cell-mediated 

xenorejection of human ESCs [158,166,167]. Following the 

characterization of human ESC lines, and considering the ability 

of whole-cell vaccines to deliver multiple oncofetal antigens at 

once, along with their universal application to all patients 

regardless of their HLA type [156,168,169], researchers have 

started to apply these ESCs to whole-cell cancer vaccines to 

make ECS-based cancer vaccines. Using xenogeneic human 

ESCs as the plausible cancer vaccine to be tested on mouse and 

rat models, studies have found that human ESCs resulted in a 

moderate tumor killing effect, whereas in the case of using 

allogeneic or autologous ESCs, they observed more potent tumor 

suppressive effects [169,170]. However, considering that human 

ESCs were injected into mice, there was the possibility that the 

aforementioned immune responses were due to the 

incompatibility of the MHC antigens between the human ESCs 

and mouse cells rather than the ESC lines [169]; moreover, the 

tumorigenicity induced by the ESCs hampered their usage as 

effective cancer vaccines for clinical applications [171-173]. 

These problems led researchers to shift their focus toward using 

induced pluripotent stem cells (iPSCs), as they share very 

common features with ESCs in terms of gene expression and 

epigenetic profiles [174-179]. However, iPSCs also have some 

level of tumorigenicity. Various methods have been reported to 

overcome their tumorgenicity when developing stem cell-based 

vaccines: the terminal differentiation or complete elimination of 

residual iPSCs from culture; interfering with tumor-progression 

genes to prevent tumor formation from the residual cells; and 

tumor detection and elimination after its initial formation in the 

patient’s body [173]. In light of this, most of the recent work 
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with iPSCs have used irradiation to remove the residual iPSCs in 

the culture and strongly prevent teratoma formation and further 

iPSC-mediated tumorigenicity [180-183]. Early studies working 

on iPSCs transfected to mouse colon cancer demonstrated that 

although the iPSCs were able to induce cytokines in response to 

the cancer cells, no tumor rejection was observed, indicating that 

iPSCs need modifications to be able to induce a strong immune 

response against tumor cells; for instance, considering that 

autologous iPSCs have more accurate tumor antigens compared 

with their xenogeneic counterparts, they can be a better option 

for developing anti-cancer vaccines than the xenogeneic ones, as 

they can minimize the alloimmunity; further, to enhance their 

immune responses against cancers, immunostimulatory 

adjuvants can be used with them (such as TLR9) [169]. 

Kooreman et al. used the same strategy to generate an iPSC 

vaccine against pancreatic ductal adenocarcinoma, in which the 

autologous iPSCs were irritated, followed by the addition of 

CPG (a type of TLR 9 adjuvant) to improve the immune 

response [169]. Another study developed autologous iPSCs from 

patients with T cell acute lymphoblastic leukemia and were 

loaded in DCs; this showed efficacy in suppressing acute 

lymphoblastic leukemia cancer [184]. In a recent study, iPSC-

derived exosomes were incubated with DCs (dendritic cells) and 

their antitumor effects were explored in murine melanoma 

models; according to their results, the DC+ exosome vaccination 

significantly inhibited lung metastasis in in vivo models, induced 

long-term T cell responses, and did not alter the viability of 

normal cells and mouse viscera [185]. In the same way, another 

group prepared a nanostructure by combining the iPSCs and DC 

exosomes that contained the anticancer drug doxorubicin; this 

improved the in vivo efficacy of chemotherapy drugs as well as 

the antitumor immunity [186]. Apart from iPSCs, researchers 

have used inactivated cancer stem cells (CSCs) to develop 

cancer vaccines [187]. Chimeric antigen receptors (CARs) are 

recombinant protein receptors that have been engineered in such 

way as to enable T cells to target a specific antigen in order to 

generate an antitumor immune response and kill specific tumor 

cells. The general structure of these receptors are made up of 

three major domains: (1) an extracellular domain specified for 

selective binding to a particular tumor antigen, (2) a 
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transmembrane domain, and (3) a intracellular domain; together, 

these domains facilitate T cell-mediated tumor death by 

providing T cell signals that are necessary for their activations 

and for attacking the tumor cells [188-191]. One of the examples 

of CAR-T cell therapy is based on using genetically modified 

autologous T cells expressing CD-19. The therapy reprograms 

the patient’s own T cells via a transgene that encodes the CAR 

and is able to recognize and destroy any cells (normal and 

malignant) that express the CD-19, in a way that, after binding to 

CD19-expressing cells, the CAR sends a signal that enhances the 

T cell expansion, activation, and target cell elimination, along 

with the persistence of the drug. The aforementioned mechanism 

can be seen in two of the current FDA-approved drugs based on 

CAR-T cell therapy, i.e., Tisagenlecleucel (used to treat acute 

lymphoblastic leukemia) and Axicabtagene ciloleucel (used for 

treating large B cell lymphoma) [192,193]. However, there are 

some limitations to overcome: there is the possibility of antigen 

loss, so that patients treated with CAR-T cells may partially 

express the antigen or may not express it at all [194-196]; 

another problem is the possibility of the expression of the tumor 

antigen by normal cells [197]. Although the combination of 

checkpoint inhibitors and CAR-T cell therapy is a new treatment 

option, this treatment may still be unable to induce efficient T 

cell infiltration and may lead to cytokine-mediated toxicities that 

have been reported in several CAR-T cell therapies [198-201]. 

This requires looking for a novel method to optimize the CAR-T 

cell therapy-based cancer vaccines. 

 

DC Subsets and Their Roles in Priming and Activating 

T Cells  
 

DCs originate from macrophage–DC progenitors (MDP) in bone 

marrow and generate common DC progenitors (CDP) that then 

differentiate into the DCs [154,202], which comprise various 

types of immune cells that, based on their phenotypes, 

ontogenetic features, distribution in tissues, as well as 

transcriptional-related characteristics, are divided into three 

major groups: classical/conventional DCs (cDCs) (that include 

cDC1s and cDC2s), plasmacytoid DCs (pDCs), as well as 

monocyte-derived DCs (moDCs) [203,204]. Each of these DC 
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groups secrete specific types of cytokines that are specialized for 

priming and activating various classes of effector T cells and 

regulating particular stages of the cancer immune cycle; thus, in 

this way, they can affect the result of an immune response in 

different ways [49,202-205]; for example, cDC1s are specialized 

for antigen priming as well as their cross-presentations to the 

CD8+ T cells, followed by their recognition via MHC I signaling 

[202,206-212]. On the other hand, cDC2s are mostly involved in 

the cross-presentation of the antigens to CD4+ T cells and their 

recognition through the MHCII path, promoting Th1, Th2, and 

Th17 polarization [202,211-216]. According to single-cell 

analysis, a further level of complexity in DCs has been reported 

via the identification of various types of cDC2 subsets 

[203,217,218]. pDCs produce type I interferons (IFNs) that are 

engaged in antiviral and antitumor immune responses 

[202,212,216,219,220]. Finally, moDCs, which are stimulated by 

inflammation, become differentiated and recruited to 

inflammatory parts of the body, such as the TME [216,221-224]. 

Prior to encounters with the antigen, DCs are immature and 

characterized by a high expression of MHC-II inside the cell, 

low expressions of co-stimulatory molecules and chemokine, and 

cytokine receptors [225,226,227]. However, these immature DCs 

uptake the antigen via the cross-presentation process or cross-

dressing, and become mature DCs through various pathways, in 

particular receptor-mediated endocytosis [228,229-231]. Due to 

the presence of various types of receptors on the their surfaces 

(Figure 4), DC maturations can be stimulated by different 

factors, ranging from monoclonal antibodies (mAb) to DCs 

modifications, and the physiological alterations in DCs occur 

during their maturations, enabling DCs to secrete a wide range of 

stimulatory cytokines and other chemical molecules to block the 

inhibitory signals and increase co-stimulatory molecules, 

cytokine production, and antigen presentation [232,233,-236]. 

DCs then process and present tumor antigens derived from the 

vaccinating cells to the effector T cells (CD4 and CD8) via the 

formation of antigen–MHC complexes on the DCs, and T cells 

bind to this complex with their T cell receptors (TCRs) 

[17,234,235,237]. During maturation, DCs undergo 

physiological alterations, leading to the incremental expression 

of surface MHC I and MHC II molecules [238,239], co-
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stimulatory molecules (such as B7-1/CD80, ICAM-1/CD54, 

LFA-3/CD58, and Tropomodulin1) [240-243], chemokine 

receptors [244,245], and cytokine secretions [246-249], that 

together regulate the T cell response. Furthermore, DC 

maturation results in a reduction in the pH of the endocytic 

vacuoles, leading to proteolysis, the transport of peptide–MHC 

molecules to the cell surface, and a reduction in the capacity for 

antigen capture [250-255]. Following the upregulated 

expressions of various stimulatory molecules/receptors, the DCs 

migrate toward the draining lymph nodes to interact with the T 

cell and induce the immune response to finally present the tumor 

antigen derived from the vaccinated cells to the effector T cells 

(CD4 and CD8) via the formation of antigen–MHC complexes 

so that T cells can bind to these complexes present on the surface 

of the DCs with their receptors (TCRs) and become activated; 

this process leads to tumor killing [17]. If the CD8 T cells are 

activated efficiently, with addition of other traditional cancer 

therapy methods, such as monoclonal antibodies, chemotherapy, 

and radiation therapy, they all can work together synergistically 

to improve the efficiency of T cell-mediated tumor-killing 

effects [256-260]. With this perspective, T cell activation 

regulation is one of the key factors to be considered when 

developing cancer vaccines. T cell activation is modulated by a 

wide range of other factors and signals produced by the activated 

DCs [261], agonist antibodies [262,263], co-stimulatory 

molecule receptors [264,265], and co-inhibitors (immune 

checkpoint inhibitors) [84,266]. However, in order to maintain 

immune homeostasis and self-tolerance, as well as to 

reduce/prevent inflammation and autoimmunity diseases, it 

would be necessary to inhibit the effects of stimulatory signals 

when needed. In light of this, specific molecules, including (1) a 

heterogeneous Foxp3 expressing a subset of CD4+ T cells 

known as regulatory T cells (Tregs) that have 

immunosuppressive properties [267-270], and (2) other 

suppressive immune cells, such as myeloid-derived suppressor 

cells (MDSC) [271-273], act and suppress by secreting various 

inhibitory cytokines and molecules (such as TGF-β, IL-10, and 

IL-35) [257,274-277]. Chemotherapy and radiation, if used at 

immunomodulatory doses, could inhibit the T cell activation 

[278-282]. 
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Nucleic Acid-Based Vaccines: DNA and mRNA 

Vaccines  
 

Nucleic acid vaccines are based on using either DNA or mRNA 

to deliver genes to the host APCs to encode the tumor antigens 

and produce antigen proteins so that the expressed tumor 

antigens induce appropriate immune response to kill/inhibit 

cancer cells [283]. 

 

DNA-Based Cancer Vaccines  

 

The history of using DNA cancer vaccines goes back to 1990 

when Wolff et al. studied the effects of the direct injection of 

naked DNA to murine muscles, which resulted in the expression 

of their corresponding proteins [284]. And in 1998, the first 

human trials of a DNA vaccine were reported, which 

demonstrated the efficiency of DNA vaccines in treating 

immunodeficiency virus type 1 (HIV) [285]. Cancer DNA 

vaccines are based on using bacterial plasmids that encode the 

tumor antigens to activate both innate and adaptive immune 

responses. In order for the DNA vaccines to be functional, they 

need to enter to the cell nucleus to be transcribed into mRNA; 

then, they are transported to the cytoplasm to be translated to the 

encoded antigens, followed by antigen processing and 

presentation to CD8+ T (via MHC I) and CD4+ T (via MHC II) 

cells to activate particular immune responses [286-289]. The 

mode of action of DNA vaccines is the activation of adaptive 

and innate immune systems [290]. Regarding the adaptive 

immunity activation-based mechanisms, there are three major 

pathways: (1) the direct insertion of DNA into a somatic cell, 

such as a muscle cell, followed by translating to antigens, and 

their direct presentation to the cytotoxic CD8+T cells via the 

MHC-1 molecules [291]; (2) the releasing of the DNA-encoded 

antigen in somatic cells through secretion or via apoptotic 

bodies, followed by phagocytosis and the processing of the 

released peptides by APCs and their cross-presentations to the 

CD4+ T cells by the MHC II molecules [291]; and (3) the direct 

transfection of DNA into the APCs to generate antigens (which 

would be endogenous antigens). These endogenous antigens are 

then processed and presented to CD8+ T and CD4+ T cells via 
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MHC I and MHC II molecules, respectively, to induce adaptive 

cellular immunity (via activation of CD8+ T cells followed by 

their differentiation to CTLs) as well as humoral immunity (by 

activating the CD4+ T cells); this direct transfection of DNA into 

APCs, which mainly takes the form of intradermal delivery, is a 

momentous pathway for DNA-based cancer vaccines [292]. 

Turning to the innate immunity activation pathways mediated by 

DNA vaccines, there are a wide range of factors that regulate the 

aforementioned pathway, such as CpG (cytosine phosphate 

guanosine) dinucleotides, which are immunostimulatory motifs 

within bacterially produced plasmid DNA [293]. These are 

involved in stimulating innate immunity activation by interacting 

with one of the key innate immunity stimulators, i.e., Toll-like 

receptor 9 (TLR9). This is followed by thTLR9 recognizing 

unmethylated CpG motifs in bacterial DNA, resulting in the 

triggering of the TLR-mediated signaling pathway of 

macrophages, dendritic cells, and B cells, which involves 

activations of the NF-κB, IRAK, and MyD88 signaling pathways 

to produce proinflammatory cytokines, chemokines, and 

immunoglobulins [113,294]. Furthermore, DNA itself activates 

the STING signaling pathway, which is the major pathway 

controlling the DNA signaling cascades, which occur in 

cytoplasm independent of TLR. In vivo studies have confirmed 

that DNA vaccines cannot induce a robust adaptive immune 

response in the absence of the STING path [113,295]. DNA 

vaccines offer various advantages, including being highly 

specific and safe, encoding a wide range of antigens, having low 

production costs, as well as easy transport and storage; 

moreover, DNA vaccine have a lower risk of insertional 

mutation and DNA rarely binds to host chromosomes [296-298]. 

Furthermore optimized DNA vaccines have been efficient in 

preclinical studies [299-302]. However, because of their poor 

immunogenicity, DNA vaccines have gained little progression in 

clinical trials [303,304]. There are several optimization strategies 

to tackle the poor immunogenicity problem, including the 

optimization of plasmid elements (such as the Kozak sequence, 

intron, and species-specific codons) [305,306], a powerful 

promoter sequence for an efficient transcription (such as 

modified viral cytomegalovirus promoters) [306-308], using 

specific adjuvants (such as cytosine–guanine dinucleotide (CPG) 
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motifs, polymers, nanoparticles, liposomes, and small molecule 

agonists) [305,306,309], and finally, modifying the design of 

tumor antigens [305,306]. 

 

mRNA-Based Vaccines  

 

In vitro transcribed mRNA vaccines are the very early versions 

of mRNA vaccines developed in 1984 using an in vitro 

transcribed system containing a plasmid DNA template, RNA 

polymerases, along with other main components [310]. Although 

at first mRNA vaccines were not developed for therapeutic 

purposes, early research, including the first in vitro (using DCs 

that were pulsed with RNA) and in vivo (in mice) studies 

pertinent to the mRNA-based cancer vaccine back in the 1990s 

[311], paved the way for using mRNA vaccines for treating 

diseases, including cancers. Subsequent research that focused on 

delivering mRNA into the cells using liposomes further 

confirmed the therapeutic efficiency of mRNA-based vaccines 

[312], as mRNA vaccines bring a wide spectrum of benefits, 

such as tolerability (side effects are controllable and temporary) 

and the lack of a need for genome integration (because unlike 

DNA, there is no need for the mRNA to enter the cell nucleus); 

thus, the risk of insertional mutagenesis is eliminated. There is 

no need for the usage of any pathogenic/viral agents for 

developing mRNA-based vaccines; therefore, it is non-

infectious. Furthermore, mRNA vaccines are degraded easily 

(which reduces risk of toxicity), providing humoral and cellular 

immunity, which are essential for antitumor responses. 

Additionally, mRNA vaccine production is fast and inexpensive 

[313-316]. There are four major types of transcribed mRNA: 

conventional mRNA, self-amplifying mRNA (samRNA), trans-

amplifying RNA (tamRNA), and circular mRNA (circmRNA) 

[317-320]. The general structure of these in vitro transcribed 

conventional mRNAs are similar to natural mRNAs in 

eukaryotic cells, i.e., they are made up of a 5′ cap, 5′ and 3′ 

untranslated regions (UTRs), an open reading frame (ORF), and 

a poly(A) tail [320-323]. In spite of the advantages of such 

mRNA vaccines, some drawbacks, including the inherent 

instability of the mRNA, lack of good manufacturing practices, 

low protein expression efficacy, high immunogenicity, along 
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with the difficulties related to the in vivo delivery of mRNA into 

cells, and off-target side effects as a result of repeating the 

injection dosage to maintain protein expression, have hampered 

its advancement as an effective therapeutic vaccine [314,324]. 

With this in mind, in recent decades, considerable efforts have 

been made to optimize mRNA-based vaccines by improving 

mRNA stability, reducing its in vitro and in vivo 

immunogenicity through chemical modifications, product 

purification, and sequence optimization, such as the 5′ end 

(autologous) or the 5′ cap (analogues) modifications, ORF 

modification by codon optimization, guanine plus cytosine (GC) 

content enrichment, maintaining the length of the 3′ poly(A) tail 

within 120–150 nucleotides, and adding chemically modified 

adenosines [325-330]. Another way to improve the stability and 

the protein yield was to develop other types of vaccines which 

are based on RNA rather than mRNA. For example, self-

amplifying RNA (saRNA), trans-amplifying RNA (taRNA), and 

circular RNA (circRNA) have brought therapeutic benefits in the 

realm of cancer vaccines [320-340]. 

 

However, in order for mRNA vaccines to be used in clinical 

applications, they should be protected from enzymatic 

degradation, successfully delivered to the target cells, followed 

by endocytosis, and escape from endosomes to prevent 

premature degradation. The physicochemical properties of 

mRNA complexes should be taken into consideration, as they 

affect the mRNA uptake mechanisms by the targeted cells 

[315,341,342]. With this perspective, the efficient delivery of 

mRNA to the targeted cell/tissue is necessary. To reach this goal, 

two major approaches have been developed: (1) ex vivo DC 

transfection via electroporation followed by re-infusion of the 

transfected cells [343-345], and (2) the direct injection of 

mRNA, with or without a carrier [322,345,346]. In the first 

approach, mRNA is loaded into the DCs through electroporation 

(to achieve optimized ex vivo transfection without using any 

carriers). Upon generating transfection DCs, they would be re-

infused to the patient to act as carriers as part of an autologous 

vaccine and induce immune responses. With the ability to initiate 

adaptive immune responses as well as anti-body responses (by 

presenting the intact antigen to B cells), DCs have gained 
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considerable attention to be used as ex vivo and in vivo carriers 

in the realm of mRNA vaccine delivery [347-352]. 

 

In the same vein, intradermal and intranodal injections were 

efficient in providing in vivo immunizations [353,354]. On the 

other hand, physical methods (using electroporation [355] or a 

gene gun [356-358]) increase the mRNA uptake efficiency by 

the DCs, but are faced with major limitations that hamper their 

further development, such as increasing cell death, and confining 

accessibility to target cells [359]; furthermore, using a gene gun, 

for instance, demonstrated efficiency only in mouse models but 

not in human models or larger study scales; electroporation 

increased the immunogenicity (only in the case of a self-

amplifying RNA vaccine) [315,358,360]. Using viral carriers for 

mRNA delivery has several drawbacks, making them 

inappropriate carriers; some of these drawbacks include poor in 

vivo efficacy, the possibility of stimulation of immune responses 

mediated by the vectors, already-existing immunity against viral 

vectors, and biosafety issues [133,361-363]. These drawbacks 

led scientists to look for other mRNA carriers, which resulted in 

taking advantage of nanoparticles, in particular the lipid and 

polymeric-based nanoparticles, to develop versatile, effective, 

and safe carriers for mRNA delivery [364-368]. Some of these 

lipid/polymeric-based methods are based on using protamine 

(cationic peptide) [369-371], cationic lipids [372,373], and 

polymers, including dendrimers and chitosan [374-376], as well 

as lipid nanoparticles [352,365,377], which are conjugated with 

other polymers like polyethylene glycol (PEG) to increase the 

stability. In the case of lipid carriers, cholesterol and other 

natural lipids present in the membrane have been applied to 

enhance the efficacy. The lipid-based delivery vector not only 

improves the efficiency of mRNA delivery and facilitates the 

selective targeting of organs and/or cells (as it would be possible 

by adjusting the ratio of various elements in the lipid 

nanoparticle) [352,364], but also, such lipid-based carriers 

induce an adjuvant effect, as reported in some of the recent 

studies showing that lipid nanoparticles induce strong in vivo 

immune responses, with stronger adjuvant efficacy than 

AddaVax (a commonplace vaccine adjuvant) [322,378-380]; 

furthermore, lipid nanoparticles can enhance the antitumor 
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efficacy of mRNA cancer vaccines through activating the Toll-

like receptor 4 (TLR4) signaling pathway [381,382]. mRNA 

vaccines can be administered through several routes, such as 

subcutaneous, intradermal, intranasal, intramuscular, intranodal, 

intratumorally, and intravenous delivery routes [383]. The ex 

vivo engineering of autologous DCs with mRNA has been 

considered as the preferred method for tumor antigen delivery, 

but most approaches used for developing mRNA vaccines have a 

tendency to use direct mRNA administration with lipid 

nanoparticle carriers [343,384]. mRNA-based vaccination is 

developed to either induce or enhance an effective antitumor 

immune response. Following the administration and cellular 

uptake by APCs, mRNA goes to the cytoplasm and undergoes 

antigen priming and MHC-antigen presentation cascades, 

leading to APC-mediated antigen presentation via MHC-I and 

MHC-II and CD8+ and CD4+ T cell activation. Apart from that, 

CD4+ T cells themselves can induce a humoral immune 

response through coactivating antigen-specific B cells, and these 

B cells can serve as APCs to conversely activate CD4+ T cells 

upon the presentation of antigens to the B cells via MHC class II 

[385-388]. 

 

Personalized Cancer Vaccines  
 

Personalized cancer vaccines are another type of immunotherapy 

designed to target a patient’s specific cancer cells based on their 

unique genetic profiles to stimulate the patient’s immune system 

to recognize and attack cancer cells more selectively [389]. 

Based on the different cancer vaccine platforms discussed 

earlier, several types of personalized cancer vaccines have been 

developed and used in preclinical and clinical studies, such as 

personalized cancer vaccines based on peptides [106,390], whole 

cells [390,391], nucleic acids (DNA and mRNA) [390,392], and 

neoantigens [390,393]. There are several steps for developing 

personalized cancer vaccines: (1) a genomic analysis of the 

patient’s tumor (to identify tumor-specific characteristics, such 

as mutations, neoantigens, and other related characteristics that 

can be targeted by the immune system); (2) antigen selection 

(based on the genomic analysis, tumor-specific antigens are 

selected for inclusion in the vaccine); and (3) vaccine 
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formulation (vaccines are formulated using different approaches, 

such as with peptides derived from tumor antigens, DCs loaded 

with tumor antigens, DNA or RNA encoding tumor antigens, 

neoantigens [394], or whole tumor cell lysates) [395]. Upon 

administration of a personalized cancer vaccine, antigens in the 

vaccine are presented to immune cells by the APCs and stimulate 

an immune response against the cancer cells bearing the targeted 

antigens. Cancer vaccines, both conventional and the 

personalized type, contribute to the growing field of cancer 

immunotherapy, with personalized vaccines showing promise in 

improving treatment outcomes for patients with specific tumor 

profiles, as this type of vaccine offers a highly targeted and 

individualized approach to cancer immunotherapy, compared to 

its conventional counterpart that may target common antigens or 

cancer-associated antigens across broader patient populations. 

Personalized vaccines are designed to target the patient’s specific 

cancer cells based on the tumor’s genetic and antigen profile and 

stimulate the immune system to recognize and attack those 

specific cancer cells, while conventional cancer vaccines may 

target common antigens shared by several cancer patients or 

antigens associated with certain types of cancer but are not 

personalized to an individual’s tumor. Additionally, the antigens 

for personalized cancer vaccines are selected based on a genomic 

analysis of the patient’s tumor and neoantigens, whereas the 

targeted antigens in the conventional cancer vaccines are more 

broadly expressed across cancer cells of a particular type or 

could be associated with cancer but not specific to an 

individual’s tumor. Considering the production process, the 

personalized cancer vaccines have a customized production 

process, (sequencing the patient’s tumor DNA/RNA, identifying 

specific mutations, synthesizing, or selecting peptides or 

antigens based on these mutations, and formulating the vaccine); 

however, the conventional types are produced using standardized 

antigens or antigen sources that are not personalized to a 

patient’s tumor). Personalized cancer vaccines activate a targeted 

immune response against the patient’s specific cancer cells 

bearing the selected antigens; however, the conventional 

vaccines induce a generalized immune response against common 

cancer antigens or antigens associated with specific types of 

cancer. Personalized cancer vaccines are often used in precision 
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medicine, where treatments are tailored to individual patients 

based on their unique characteristics. While personalized cancer 

vaccines offer promising potential in cancer therapy, there are 

also some challenges that need to be addressed; for instance, 

they require complex processes (such as genomic sequencing of 

the tumor, identification of specific antigens), and custom 

manufacturing of the vaccine for each patient. Considering that 

these processes are time-consuming, resource-intensive, and 

costly, these vaccines have limited accessibility among patient 

populations; this time-consuming problem may lead to other 

issues and these vaccines are not suitable for patients who 

require immediate treatment (those with rapidly progressing 

cancers), as the time required for genomic analysis, antigen 

selection, and vaccine production may delay treatment initiation 

[396]. Tumor heterogeneity is another challenge; considering the 

genetically heterogeneous nature of the tumors, they contain a 

mix of different cell populations with varying genetic mutations 

and antigen profiles, and thus, personalized vaccines may not 

target all relevant antigens present in the tumor, leading to 

potential escape mechanisms by cancer cells that are not targeted 

by the vaccine [397]. Furthermore, personalized cancer vaccines 

may face challenges in overcoming the immune evasion 

mechanism of the cancer cells, leading to limited efficacy in 

some cases; other barriers can be attributed to the limited clinical 

evidence along with other logistical challenges (including 

storage, transportation, and administration of the personalized 

cancer vaccines) [393-400]. Despite these challenges, ongoing 

research and advancements in cancer immunotherapy continue to 

improve the development and utilization of personalized cancer 

vaccines, with the aim of addressing these limitations and 

enhancing their effectiveness in treating cancer. The most 

effective approach has been the development of neoantigen-

based personal cancer vaccines [394,400-404]. In general, all of 

the current cancer vaccine platforms have advantages, such as 

inducing both humoral and adaptive immune systems, long-term 

stability, flexibility, high immunogenicity, clinical safety, and 

etc. [106,187,324,364,405-424] along with disadvantages, such 

as antigen loss, low MHC expression, in appropriate APC uptake 

and antigen presentation, and etc. [106,201,287,363,383,411-

419,422,423] that are summarized in details in Table 1. 
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Table 1: Comparing different vaccine platforms. 

  
Advantages Disadvantages Status of Some of the Vaccines in Clinical Trials 

(2016–2023) 

Peptide 

vaccines 
• Simple chemical-based synthesis 

• Cost-effectiveness 

• Flexibility to multiple antigens 

• High specificity 

• High stability 

• Safety for clinical applications 

• Induce both humoral and adaptive immunity 

systems [106,405,406,407,408,409,410] 

• Relatively poor immunogenicity 

• Inappropriate adjuvants 

• Tumor heterogeneity 

• Antigen loss 

• Lower MHC expression 

• Lack of T cell infiltration in the 

tumor tissue 

• Inducing immune suppression 

through T cell dysfunction 

• There is no FDA approved in vivo 

peptide-based cancer vaccines 

[106,411,412] 

• Glioblastoma/Glioma: 

• Phase I (NCT05283109, NCT05283109, 

NCT04280848, NCT04116658, 

NCT04943718, NCT02960230) 

• Phase II (NCT04280848, NCT04116658, 

NCT03018288, NCT02960230) 

• Phase III (NCT03149003) 

• Breast Cancer: 

• Phase I (NCT05269381, NCT02938442), 

• Phase II (NCT02938442, NCT03012100, 

NCT03606967, NCT02636582, 

NCT04197687, NCT03606967) 

• Cervical/Uterus/Ovarian Cancers: 

• Phase I (NCT05269381, NCT04580771, 

NCT03728881, NCT02865135, 

NCT03311334, NCT03761914, 

NCT02785250, NCT03206047), 

• Phase II (NCT03728881, NCT04445064, 

NCT03946358, NCT02865135, 

NCT03311334, NCT03029403, 

NCT03761914, NCT02785250, 

NCT03206047, NCT04713514) 

• Phase III (NCT04782895, NCT04508309) 

• Lung Cancer: 

• Phase I (NCT05269381, NCT02818426, 

NCT03715985), 

• Phase II (NCT02818426, NCT04263051, 

NCT03715985) 

• Phase III (NCT02654587, NCT04998474) 

• Prostate Cancer: 

• Phase I (NCT05010200) 

• Phase II (NCT03579654, NCT04114825) 

• Leukemia/Blood Cancer: 

• Phase I (NCT03559413, NCT03761914), 

NCT05025488, NCT04688385) 

• Phase II (NCT04747002, NCT03560752, 

NCT03559413, NCT03761914, 

NCT04060277, NCT03702231, 

NCT02802943) 

• Head and Neck Cancer: 

• Phase I (NCT02865135, NCT03821272, 
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NCT05269381) 

• Phase II (NCT03946358, NCT04369937, 

NCT02865135, NCT03821272, 

NCT04445064) 

• Gastric Cancer: 

• Phase I (NCT05269381) 

• Bladder Cancer: 

• Phase I (NCT05843448, NCT03715985, 

NCT05843448) 

• Phase II (NCT03715985) 

• Liver Cancer: 

• Phase I (NCT05059821) 

• Phase II (NCT04206254) 

• Phase III (NCT04206254) 

• Colorectal Cancer: 

• Phase I (NCT03761914) 

• Phase II (NCT03761914) 

• Melanoma Cancer: 

• Phase I (NCT05269381, NCT03715985) 

• Phase II (NCT03715985) 

Viral/bacterial-

based vaccines 
• Recapitulate the natural infection process of 

specific pathogens 

• Induce strong and long-lasting immune 

responses 

• Produce high immunogenicity without 

adjuvant 

• Flexible and facile engineering possibility for 

designing more selective vaccines 

[413,414,415] 

• Not a robust immune response in 

some cases 

• Pre-existing immunity to the viral 

vectors 

• Limited capacity for gene insertion 

• Limited expression of viral 

transgene due to lysis of the target 

cell [363,416] 

• Pancreatic Cancer: 

• Phase I (NCT03329248, NCT03136406, 

NCT03953235, NCT05076760), 

• Phase II (NCT03329248, NCT03329248, 

NCT03953235) 

• Glioblastoma/Glioma: 

• Phase II (NCT04105374) 

• Phase III (NCT04105374) 

• Breast Cancer: 

• Phase I (NCT05076760) 

• Phase II (NCT03632941) 

• Prostate Cancer: 

• Phase I (NCT03815942, NCT02649855, 

NCT05553639, NCT02933255) 

• Phase II (NCT03815942, NCT03315871, 

NCT02649855, NCT02933255, 

NCT05553639) 

• Cervical/Uterus/Ovarian Cancers: 

• Phase II (NCT03113487) 

• Lung Cancer: 

• Phase I (NCT03953235, NCT05076760) 

• Phase II (NCT03953235) 

• Head and Neck Cancer: Phase I 

(NCT05076760) 
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Gastric Cancer: Phase II (NCT04111172) 

Colorectal Cancer: 

• Phase I (NCT03563157) 

• Phase II (NCT03563157) 

• Melanoma Cancer: 

• Phase I (NCT05076760, NCT04410874) 

• Phase II (NCT04410874) 

DNA vaccines • Cost-effectiveness 

• Repetitive administration possibility 

• Simple and flexible design 

• Encoding different antigens 

• Triggers long-lasting innate and adaptive 

immune responses 

• Devoid of pathogenic infection or clinical side 

effects 

• Heat stable 

• Facile transportation and storage 

• Large-scale production possibility 

[417,418,419,420] 

• Poor immunogenicity 

• Requires a carrier for delivery 

• Inefficient APC-mediated antigen 

uptake 

• Inefficient immune responses 

• Risk of integrating into the host’s 

chromosomal DNA and insertional 

mutagenesis 

• Expression of antibiotic-resistant 

genes [287,418,419] 

• Pancreatic Cancer: 

• Phase I (NCT03122106, NCT04853017, 

NCT05726864) 

• Phase II (NCT05726864) 

• Glioblastoma/Glioma: 

• Phase I (NCT03491683, NCT04015700, 

NCT03750071, NCT05698199) 

• Phase II (NCT03491683, NCT03750071) 

• Breast Cancer: 

• Phase I (NCT02780401, NCT03199040, 

NCT03199040) 

• Phase II (NCT05455658, NCT04329065) 

• Prostate Cancer: 

• Phase I (NCT03532217, NCT04989946) 

• Phase II (NCT03600350, NCT04090528, 

NCT04989946) 

• Cervical/Uterus/Ovarian Cancers: 

• Phase I (NCT03444376, NCT04131413, 

NCT04853017) 

• Phase II (NCT03444376, NCT03439085, 

NCT03439085, NCT03911076, 

NCT03823131, NCT05334706, 

NCT03946358, NCT05799144, 

NCT03911076, NCT05334706) 

• Phase III (NCT03721978) 

• Lung Cancer: 

• Phase I (NCT03166254, NCT05726864, 

NCT04853017) 

• Phase II (NCT04397003, NCT05242965, 

NCT05726864) 

• Head and Neck Cancer: 

• Phase II (NCT03823131, NCT03946358, 

NCT05799144) 

• Melanoma Cancer: 

• Phase I (NCT03289962, NCT03655756, 

NCT04160065) 

• Phase II (NCT03897881, NCT04526899, 

NCT04079166) 
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mRNA 

vaccines 
• Encoding and expressing TAA, TSA, and their 

related cytokines 

• Stronger humoral and cellular immunities 

compared with the pathogen and peptide-based 

vaccines 

• Rapid production 

• Low manufacturing costs [324,421] 

• In vivo instability of mRNA 

• Insufficient mRNA distribution 

• Inducing unwanted immune 

responses 

• Possibility of vascular blockage due 

to combination of mRNA with 

serum proteins [383,422,423]. 

• Pancreatic Cancer: 

• Phase I (NCT04161755, NCT03948763, 

NCT04741984) 

• Glioblastoma/Glioma: 

• Phase I (NCT05938387, NCT04573140, 

NCT04741984, NCT04911621) 

• Phase II (NCT03927222, NCT03688178, 

NCT04911621) 

• Breast Cancer: 

• Phase I (NCT03788083) 

• Prostate Cancer: 

• Phase I (NCT04382898, NCT04382898) 

• Phase II (NCT04382898, NCT04382898) 

• Cervical/Uterus/Ovarian Cancers: 

• Phase I (NCT04163094, NCT03323398, 

NCT04163094) 

• Phase II (NCT03323398) 

• Lung Cancer: 

• Phase I (NCT03639714, NCT03164772, 

NCT03289962, NCT05660408, 

NCT03948763) 

• Phase II (NCT03639714, NCT03164772, 

NCT05660408) 

• Head and Neck Cancer: 

• Phase II (NCT04534205) 

• Colorectal Cancer: 

• Phase I (NCT03948763, NCT03948763) 

• Phase II (NCT04486378, NCT05456165) 

Cell-based 

vaccines (DCs, 

iPSCs, and 

CAR-T cells) 

• Presenting all potential antigens to the immune 

system 

• Producing various tumor antigens 

• Long-lasting immune responses 

• Mimicking the expression of tumor-cell 

antigens 

• Inducing significant antitumor immune 

responses (in particular in iPSCs) [187,424] 

• Expensive 

• Longer treatment duration (in case 

of iPSCs or CAR-T cell) 

• Loss of the antigen recognized by 

CAR 

• Cytokine-related toxicities (in case 

of CAR-T cell therapy) [201] 

• Pancreatic Cancer: 

• Phase I (NCT02451982, NCT03767582, 

NCT03387098, NCT03552718) 

• Phase II (NCT03190265, NCT02648282, 

NCT02451982, NCT03767582, 

NCT03161379, NCT03387098) 

• Breast Cancer: 

• Phase I (NCT03328026, NCT03552718, 

NCT03674827, NCT03387085, 

NCT05269381, NCT05035407) 

• Phase II (NCT03328026, NCT03384914, 

NCT05455658, NCT03387085) 

• Colorectal Cancer: 

• Phase I (NCT03552718) 

• Phase II (NCT04912765, NCT02919644) 

• Head and Neck Cancer: 
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• Phase I (NCT03552718) 

• Phase II (NCT04166006, NCT04445064) 

• Glioblastoma/Glioma: 

• Phase I (NCT04388033, NCT04388033, 

NCT04911621, NCT03914768, 

NCT04388033, NCT03914768) 

• Phase II (NCT04523688, NCT04388033, 

NCT03395587, NCT03548571, 

NCT02465268, NCT03400917, 

NCT04388033, NCT04911621, 

NCT04388033) 

• Phase III (NCT03548571) 

• Lung Cancer: 

• Phase I (NCT03674827, NCT05035407, 

NCT03970746, NCT04487756, 

NCT02466568, NCT03674827, 

NCT05104515, NCT05035407) 

• Phase II (NCT03970746, NCT03406715, 

NCT04487756, NCT04277221, 

NCT02466568, NCT04998474, 

NCT04300244, NCT05242965) 

• Liver Cancer: 

• Phase I (NCT03552718, NCT03552718, 

NCT03674073, NCT05059821) 

• Phase II (NCT04912765, NCT04317248, 

NCT03406715) 

• Cervical/uterine/Ovarian Cancers: 

• Phase I (NCT05269381, NCT05035407, 

NCT05104515, NCT05035407) 

• Phase II (NCT04800978) 

• Gastric Cancer: 

• Phase I (NCT04567069, NCT05035407) 

• Phase II (NCT04567069) 

• Leukemia/Blood Cancer: 

• Phase II (NCT03059485, NCT04977024) 

• Melanoma Cancer: 

• Phase I (NCT03552718, NCT05269381) 
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Figure 4: Cancer vaccine platforms and their mechanisms of action. All of the 

discussed vaccine platforms tend to be up taken by the antigen-presenting cells 

to finally induce and enhance the T cell-mediated pathways of killing cancer 

cells [404]. 

 

Combining Artificial Intelligence and Cold 

Plasma Technology as Novel Modality Tools to 

Develop Cancer Vaccines  
 

Several major companies are currently the leaders of producing 

therapeutic cancer vaccines, including the following: Immatics, 

BioNTech, AstraZeneca, Memorial Sloan Kettering Cancer 

Center, Merck, Massachusetts General Hospital, F. Hoffmann-La 

Roche, Bristol-Myers Squibb, Regeneron Pharmaceuticals, and 

Novartis. In spite of numerous patents and the development of 

various cancer vaccines by the above-mentioned companies, 

there are several major challenges for the development of 

efficient and universal cancer vaccines, such as tumor variability 

in different people, the similarity of the tumor antigens to the 

body’s own antigens, as well as the possibility of cancer 

recurrence (caused by an immunosuppressive TME, or tumor 

heterogenicity) [390,425]. With this in mind, optimizing current 

cancer vaccines that can cover a wide range of tumor antigens, 

distinguish tumor antigens from the body’s counterparts, and 

prevent cancer recurrence is indispensable. As can be seen 

in Table 1, all of the vaccine platforms have their own particular 

pros and cons, and this has led scientists to optimize cancer 

vaccines by combining these different platforms with the aim of 

reinforcing the advantages and reducing the disadvantages, and 
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to come up with better therapeutic cancer vaccines. Examples of 

such combination therapies include using lipid-based deliveries 

(liposomes, lipid nanoparticles, catanionic lipids), various 

polymers, in particular, PEG, to enhance mRNA stability, 

infusing polymers with the target cells, tumor specificity, 

amplifying the tumor antigen response, and reducing possible 

toxicities [426-435]. Furthermore, in order to overcome the 

immunosuppressive TME (which can prevent function and 

activation of immune cells necessary for destroying cancer cells 

[436,437]), researchers have combined the usage of mRNA 

vaccines with immune checkpoint inhibitors [328,438,439]. 

Tumor heterogenicity refers to the presence of genetically 

diverse subpopulations with different phenotypic profiles and 

leads to a diversity of genetic mutations. Tumor homogeneity 

can be seen between tumors or within the same tumor; tumor 

homogeneity makes it difficult to detect mutations that occur in 

subpopulations and has hampered the design of appropriate 

treatment strategies [440,441]. In terms of tumor heterogenicity, 

there are spatial (dynamic genome evolution through tumor 

progression) and temporal (tumor is made up of subclones with 

different genetic profiles which makes people with the same 

cancer and tumor subtypes respond differently toward 

treatments) heterogenicities and both should be overcome [324]. 

Some of the strategies were based on designing personalized 

mRNA cancer vaccines based on the variations seen in tumor 

regions via tissue multipoint sampling; these strategies are able 

target multiple antigens expressed across various tumor regions 

at the same time (to target the spatial heterogenicity) and monitor 

the progression of the disease, which can be followed by 

modulating treatment plans based on the results of monitoring 

(to tackle the temporal heterogenicity). However, these strategies 

and combination therapies make the vaccine design and 

administration routes more complex, and increase the cost and 

duration of the treatment time for patients [324]. With the 

extension of artificial intelligence (AI) applications in various 

sectors, including medicine, scientists have taken advantage of 

AI algorithms (such as MHC-binding prediction tools, 

quantification of mutated transcript expression, and clonality of 

the mutation, identifying tumor-specific T cell epitopes) to 

predict the tumor antigens and their properties based on tumor 
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genomic data. Based on the likelihood of eliciting a T cell 

response, scientists can select some of the specific mutations as 

vaccine candidates. AI tools may enhance the accuracy of 

vaccine designs and overcome the challenges associated with the 

heterogeneity of tumors [442-446]. 

 

Using AI algorithms seems to be a promising tool that could help 

in addressing the major challenges of cancer vaccine 

development. Another possible technology that could be used 

along with the AI-related tools is cold plasma-related systems. 

Cold atmospheric plasma (CAP), also known as nonthermal or 

cold physical plasma, is a medium consisting of partially ionized 

gas(es) that provokes the generation of various reactive oxygen 

and nitrogen species. CAP has been applied in a wide range of 

industries, including medicine and in particular, in cancer 

therapy; CAP has shown promising results in destroying cancer 

cells as well as solid tumors by affecting various related 

mechanisms at the same time, such as inducing apoptosis, 

specifically in tumor cells but not in their normal counterparts, 

reducing cell migration, arresting the cell cycle at the S-phase, 

damaging the DNA, along with increasing the intracellular 

concentrations of ROS in the TME, reducing tumor 

immunosuppression, and improving antigenicity [447-453]. CAP 

has gained FDA approval to be used in cancer therapy [454-

456]. However, this technology has not been used in cancer 

vaccine development yet. Based on the way that CAP has been 

applied in cancer therapy, we propose that CAP technology 

could be applied in cancer vaccine development directly or 

indirectly. The direct methods can include the direct exposure of 

cancer cells along with vaccine administrations (for example, 

simultaneous administration of lipid nanoparticle mRNA cancer 

vaccines and cold plasma exposure of the cancer cells), and the 

indirect method can include exposing either the cells in the 

culture medium (such as patient T cells in case of CAR-T cells, 

or iPSCs) or the culture medium alone to the CAP first and then 

growing the cells in the medium. This might help to reduce 

tumor heterogenicity by preventing genetic mutations with tumor 

progression, improving the selectivity of the therapy in killing 

cancer cells without affecting normal cells, and preventing tumor 

antigen expression by normal cells. Other methods may include 



Prime Archives in Molecular Biology: 2nd Edition 

37                                                                                www.videleaf.com 

trying to develop other new CAR-T cells, rather than CD19 and 

BCMA, which are able to recognize different tumor antigens, 

and applying cold plasma. Considering that CAP can enhance 

the tumor antigenicity (the degree of difference between cancer 

and normal cells recognized by immune cells) and upregulate 

immunogenic cell surface molecules such as MHC-I and II, 

introducing CAP in this field might lead to interesting outcomes. 

Other methods could include loading the inactivated whole-cell 

cancer stem cells with lipid nanoparticles containing anti-cancer 

agents or loading the cancer stem cells with liposomes 

containing iPSCs, followed by their injection; this could improve 

the efficiency of DCs and thus the immunogenic response. 

Moreover, this method may be able to target several factors at 

the same time; for example, both inactivated cancer stem cells 

and iPSCs cover a wide range of tumor antigens by themselves, 

which are poorly immunogenic (do not scape the cancer immune 

cycle) [185,187,424], and if they are used together in a system, 

this coverage spectrum might be increased and help to solve 

tumor heterogenicity problems. Furthermore, this combination 

system could further enhance the immunogenic response to 

prevent cancer recurrence. In the end, if the cold plasma is 

integrated with such a combination system, the combination 

system could be improved even more, as the CAP itself 

selectively destroys the tumor cells. At the same time, the 

liposomes containing iPSCs penetrate the DCs and enhance the 

variability of tumor antigen presentation, followed by their 

detection by T cells and the immune response. These are some of 

the methods that require future investigations, which might open 

novel and effective approaches to therapeutic cancer vaccine 

development. 

 

Summary and Conclusions  
 

To summarize, we have highlighted the recent research progress 

of four major vaccine platforms and their limitations. We believe 

that a comprehensive understanding of the immunosuppressive 

tumor microenvironment is essential for developing effective 

cancer vaccines. Besides, particle-based delivery systems have 

been intensively studied for cancer vaccines in the past few 

decades, and these hold great promise for improving the 
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immunogenicity of vaccines and facilitating lymph node 

transport. There is already a consensus that cancer vaccines 

could achieve a greater therapeutic effect if they were 

administered in combination with other immunomodulation or 

standardized therapies. However, sustained endeavors are still 

needed for identifying tumor-specific neoantigens, effective 

adjuvants, and optimizing delivery platforms. 
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