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Introduction  
 

Glioblastomas (GBMs) are devastating and universally fatal 

brain cancers in adults despite advancements in diagnostic and 

therapeutic strategies [1]. Approximately 14,000 new cases of 

GBM are diagnosed in the USA each year, with an estimated 

incidence of 3.19 per 100,000 people [2]. In recent years, the 

emergence of molecular profiling in neuro-oncology has had a 

considerable bearing on the classification, diagnosis, prognosis, 

and clinical management of GBM patients [3].  

 

The 2016 WHO classification system recognized the somatic 

mutation of the isocitrate dehydrogenase (IDH) gene in gliomas 

as a distinct entity regardless of histopathological features [4]. 

IDH mutation occurs in 50-70% of WHO grade-2/3 gliomas and 

10% of GBMs [5], which has been considered a new paradigm in 

determining the prognosis of these patients. The new 2021 WHO 

system has reclassified GBMs as IDH mutant grade-4 

astrocytomas or IDH wild-type GBMs based on gene expression 

profiles [6]. It has been widely reported that glioma patients 

harboring IDH mutations demonstrate a better response to 
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chemoradiation therapy and live longer than those with IDH 

wild-type alleles [7,8]. Although, at the same time, 

immunohistochemical analyses and exomic sequencing are 

considered gold standards for determining IDH mutation status 

in gliomas [9,10], tissue heterogeneity, partial sampling of tissue 

specimens, and presence of variable amounts of antigens 

constraint the utility of these methods in reliable detection of 

IDH mutation status [11]. Moreover, it is not always possible to 

perform neurosurgical interventions because of the eloquent 

locations of these neoplasms. 

 

 Therefore, non-invasive identification of IDH mutant gliomas is 

vital for making informed decisions on therapeutic intervention 

and prognosticating these patients. Evidence supports that 

cancer-associated IDH mutations block normal cellular 

differentiation and promote tumorigenesis via the abnormal 

production of 2-hydroxyglutarate (2-HG), a potential 

oncometabolite [12]. Structurally, the oncometabolite 2HG 

consists of a 5-spin system and the scalar (J) coupling pattern of 

2HG leads to several multiplets with spectral peaks centered 

around 4.02 (H2), 1.9 (H3 and H3′), and 2.25 ppm (H4 and H4′) 

spectral locations. The noninvasive detection of 2HG on 

conventional proton MR Spectroscopy (1H-MRS) is challenging 

due to the extensive overlap of its resonances with those from 

metabolites, namely, NAA, glutamate (Glu), glutamine (Gln), 

gamma-aminobutyric acid (GABA), and lipids. Some prior 

studies [13-15] have employed sophisticated 1H-MRS 

acquisition and postprocessing strategies for reliable in-vivo 

detection and quantification of 2HG. However, not all IDH-

mutant gliomas show the neomorphic activity of the 2-HG 

production [16]. Moreover, these sophisticated 1H-MRS 

sequences are not readily available in routine clinical settings. 

 

Conventional magnetic resonance imaging (MRI) remains the 

mainstay for determining tumor location, size, and structural 

features in neurooncology [17]. Radiomics is a rapidly evolving 

translational field that automatically produces mineable high-

dimensionality data from positron emission tomography (PET), 

computed tomography (CT), and MRI images with high 

precision [18-25]. Several previous studies have documented the 



Prime Archives in Cancer Research: 3rd Edition 

5                                                                                www.videleaf.com 

clinical potential of quantitative radiomic features extracted from 

conventional MRI data in diagnosis, determining molecular 

signatures, assessing treatment response, and predicting survival 

outcomes in GBM patients [26-30]. Some other studies have also 

reported promising findings in identifying IDH mutant grade-4 

astrocytomas using conventional neuroimaging-based radiomic 

classification models with variable accuracies [31,32]. However, 

these studies were limited by the extraction of a sparse number 

of radiomic features (n=31) [31] or by the inclusion of a small 

sample size of IDH mutant grade-4 astrocytomas (n=7) [32].  

 

With these inadequacies in mind, the current study was designed 

to investigate the potential of radiomic features extracted from 

different tumor habitats as visible on widely available. 

Therefore, it universally acquired preoperative post-contrast T1 

weighted and T2-FLAIR images in differentiating IDH-mutant 

grade-4 astrocytomas from IDH wild-type GBMs. 

 

Materials and Methods  
Patient Population  
 

This retrospective study was approved by the institutional review 

board and was compliant with the Health Insurance Portability 

and Accountability Act. The inclusion criteria for enrollment in 

the present study were that all patients had (a) 

histopathologically confirmed grade-4 astrocytoma according to 

the WHO classification system, (b) known IDH mutation 

genotype using immunohistochemistry and/or gene sequencing, 

(c) available preoperative anatomical MR images acquired using 

identical data acquisition protocol. Based upon the inclusion 

criteria, a cohort of 57 patients (mean age = 57.7 ± 6.9 years, 39 

males and 18 females) with newly diagnosed grade-4 

astrocytoma and GBM were recruited in this study. Of these 57 

patients, 23 had the IDH-mutant genotype, and 34 had the IDH-

wild-type genotype. 
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Determination of IDH Mutational Status by 

Immunohistochemistry and Sequencing  
 

Hematoxylin, eosin staining, and immunohistochemistry were 

conducted on 5-micron thick formalin-fixed (10%) paraffin-

embedded tissue sections mounted on Leica Surgipath slides 

followed by drying for 60 min at 70°C temperature. In addition, 

immunohistochemistry to detect the IDH1 p.R132H variant was 

performed by using an anti-IDH1-R132H antibody (Monoclonal 

Mouse Anti-human IDH1 (R132H), Dianova, DIA Clone H09) 

and DAB chromogen was performed on a Leica Bond III 

instrument using Bond Polymer Refine Detection System (Leica 

Microsystems AR9800) following a 20-min heat-induced epitope 

retrieval with Epitope Retrieval 2, EDTA, pH 9.0. Appropriate 

positive and negative controls were included.  

 

In addition, massively parallel sequencing or RealTime 

polymerase chain reaction (PCR) was performed to confirm the 

immunohistochemical results and to interrogate other IDH 

variants. For RealTime PCR, formalin-fixed paraffin-embedded 

(FFPE) specimens with >20% tumor content were analyzed for 

IDH1 and IDH2 variants using Abbott RealTime Assays (Abbott 

Molecular, Inc., Abbott Park, IL) after extraction using the 

QIAamp DSP DNA FFPE Tissue Kit (Qiagen, Hilden, 

Germany). The Abbott RealTime IDH1 assay detects five single 

nucleotide variants (SNVs) in IDH1 (p.R132C, p.R132H, 

p.R132G, p.R132S, and p.R132L). The Abbott RealTime IDH2 

assay detects nine SNVs in IDH2 (p.R140Q, p.R140L, p.R140G, 

p.R140W, p.R172K, p.R172M, p.R172G, p.R172S, and 

p.R172W). The Abbott m2000rt software performs variant 

calling, and results are qualitatively reported as positive or not 

detected. Tests were performed according to the manufacturer’s 

instructions by adding a dilution step to the IDH2 assay. For 

massively parallel sequencing, the panel gives full gene coverage 

of 152 genes, using the Agilent Haloplex design with unique 

molecular identifiers as described previously [33]. Briefly, DNA 

was extracted from FFPE or specimens preserved in PreservCyt. 

Samples were multiplexed and sequenced on a HiSeq with total 

deduplicated reads of 6.5 million/sample; duplicate reads were 

removed based on incorporating unique molecular identifiers. 
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All variants were identified using an in-house data processing 

bioinformatics pipeline capable of detecting SNVs, insertions 

and/or deletions (indels), and copy number gains for a subset of 

genes based on increased read depth. An experienced 

neuropathologist (MPN) reviewed cases from all patients to 

confirm the IDH status. 

 

MRI Data Acquisition  
 

All Patients underwent MRI on a 3T Tim Trio whole-body MR 

scanner (Siemens, Erlangen, Germany) equipped with a 12-

channel phased array head coil. The anatomical imaging protocol 

included an axial 3D-T1-weighted magnetization-prepared rapid 

acquisition of gradient echo (MPRAGE) imaging [repetition 

time (TR)/echo time (TE)/inversion time (TI)=1760/3.1/950ms]; 

in-plane resolution=1x1mm2; slice thickness=1mm; the number 

of slices=192; and axial T2-FLAIR imaging (TR/TE/TI = 

9420/141/2500ms, slice thickness=3mm; the number of 

slices=60). The postcontrast T1-weighted images were acquired 

with the same parameters as the precontrast acquisition after 

administration of the standard dose of gadobenate dimeglumine 

(MultiHance, Bracco Imaging, Milano, Italy) intravenous 

contrast agent using a power injector (Medrad, Idianola, PA). 
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Figure 1: The overview of the image processing pipeline. 

 

Image Processing  
 

The overview of the image processing pipeline, which included 

image registration, tissue segmentation, feature extraction, 

feature selection, and radiomics model building, is shown in 

Figure 1. An investigator (SAH) blinded to the IDH mutational 

status performed all the image processing steps. Post-contrast 

T1-weighted images were resliced, resampled, and co-registered 

with T2-FLAIR images using a linear affine transformation. A 

semi-automatically segmentation approach was used to generate 

regions of interest (ROIs) on the anatomical images. Care was 
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taken to exclude surrounding normal brain vessels. Manual 

inspections were performed by an experienced neuroradiologist 

to correct for any pixel anomalies present within the ROIs. 

Accordingly, these ROIs were modified manually by adding 

pixels for tumor regions not included in the initial ROIs or by 

removing pixels for non-tumor regions included in the initial 

ROIs. Post-contrast T1 weighted images were used to segment 

solid/contrast-enhancing regions, necrotic regions, and core 

tumors (solid + necrotic region). T2-FLAIR images were used to 

segment peri-tumoral edematous regions and whole tumor 

volumes. All the segmentations were performed using MATLAB 

2022a. To maximize the characterization of tumors, these 5 

segmented ROIs were overlaid on the source post-contrast T1 

weighted images and T2-FLAIR images for the data analysis 

(Figures 2 and 3). A bias field correction using N4 and an image 

normalization using histogram matching were performed using 

the 3D Slicer software on the MRI images before feature 

extraction to avoid any potential bias field distortions and data 

heterogeneity bias. 

 

 
 
Figure 2: 2D and 3D visualization of various sub-regions of a grade-4 

astrocytoma as visible on post-contrast T1 weighted image. 
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Figure 3: 2D and 3D visualization of various sub-regions of a grade-4 

astrocytoma as visible on T2-FLAIR image. 

 

Radiomic Feature Extraction  
 

From each segmented ROI, 105 original radiomic features from 

categories (shape, first-order statistical, and second-order 

texture, and higher-order statistic) were extracted using the 

PyRadiomics package in python [34]. These original features can 

be sub-divided into 7 classes, including 13 shape features, 18 

first-order statistical features, 23 gray level co-occurrence matrix 

(GLCM) features, 14 gray level dependence matrix (GLDM) 

features, 16 gray level size zone matrix (GLSZM) features, 16 

gray level run length matrix (GLRLM) features, and 5 

neighboring gray-tone difference matrix (NGTDM) features. 

Altogether, 525 radiomic features were extracted from 5 ROIs of 

each image for a total of 1050 features from post-contrast T1 and 

T2-FLAIR images. The features comply with feature definitions 

described by the Imaging Biomarker Standardization Initiative 

(IBSI) [35]. A high-performance computer system with 16GB 

RAM and an Intel Core i7-7700 CPU processor @3.60 GHz was 

used for our data processing. The feature extraction took an 

average of 2-3 minutes per patient image set. A list of all 

features is summarized in Supplementary Table S1. 

 

 

 



Prime Archives in Cancer Research: 3rd Edition 

11                                                                                www.videleaf.com 

Radiomics Feature Selection  
 

Because radiomics has a highly redundant feature space, it is 

imperative to reduce the number of correlated features to avoid 

collinearity. Multiple feature selection algorithms were 

employed to select image features, including recursive feature 

elimination (RFE), minimum redundancy, maximum relevance 

(mRmR), and K-best. Patients were divided into two mutually 

exclusive training (80%, 50%, and 30%) and testing (20%, 50%, 

and 70%) sets using the random shuffling method. On training 

data, Z-score normalization was performed, and the mean and 

standard deviation of training data were applied to testing data 

sets. The mRmR feature selection technique was used to select 

15 features. 

 

Deep Learning Approach for Data Augmentation  
 

The current study implemented a deep learning method based on 

generative adversarial networks (GAN) for data augmentation 

[36]. CTGAN is a GAN-based deep learning data synthesizer to 

increase the number of our data sets that can improve the 

reproducibility and discriminatory power of radiomics features 

[37-39]. After splitting the data set and selecting bold features 

using various feature selection algorithms, the selected radiomic 

features from each model with the highest number were used as 

the input value for CTGAN to synthesize 200 radiomic features. 

As a result, after splitting 80%, 50%, and 30% of 57 original 

data for the training sets, 245, 228, and 217 data sets (80%, 50%, 

and 30% of 57 + 200= 245, 228, and 217) including original and 

generated data were synthesized, respectively. Different splitting 

percentages were used to validate our findings [40] and to 

prevent the impact of data leakage on our results [41]. 

Furthermore, a random noise (normal distribution, mean=0.0, 

standard deviation=0.05) [42] was added to the training set. The 

test sets were not generated, and the original data sets were used 

for the testing sets. 
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Machine Learning Classifiers for Prediction Model 

Building  
 

To develop a prediction model for distinguishing IDH mutant 

grade-4 astrocytomas from IDH wild-type GBMs, a total of 18 

single and ensembled machine learning classifiers [Bernoulli 

Naïve Bayes (BNB), Multilayer Perceptron(MLP), Support 

Vector Classifier (SVC), Gaussian Naïve Bayes (GNB), 

Quadratic Discriminant Analysis (QDA), Bagging Classifier, 

Linear Discriminant Analysis (LDA), Logistic Regression (RG), 

Ridge, Ada Boost (AD), Hist Gradient Boosting (HGB), K-

Neighbors (KN) (K=5), Random Forest (RF), Gradient Boosting 

(GB), Extra Trees (ET), Decision Tree (DT), Nearest Centroid 

(NC), and Passive Aggressive (PA] were employed using an in-

house developed python package. All cases in the training cohort 

(80%, 50%, and 30%) were used to train the classifiers, and and 

internal validation (cross-validation) was performed from the 

testing cohort (20%, 50%, and 70%). Receiver operative 

characteristic (ROC) curve analyses were performed to evaluate 

the diagnostic potentials of prediction models in distinguishing 

two groups (IDH-mutant grade-4 astrocytomas and IDH wild-

type GBMs). Area under the ROC curve (AUC), area under the 

precision-recall curve (PR_AUC), accuracy (ACC), sensitivity, 

specificity, and negative and positive predictive values (NPV 

and PPV, respectively) were determined for each prediction 

model as performance metrics. 

 

Results  
 

When original MRI data (n=57) were used in discriminating 

IDH-mutant grade-4 astrocytomas from IDH wild-type GBMs, 

the best discriminatory performance (AUC=0.93, ACC=0.92, 

sensitivity=1, specificity=0.86, PR_AUC=0.92) was obtained 

from solid/contrast enhancing, and core tumor (solid + necrotic 

region) overlaid on post-contrast T1 weighted images using 

various combinations of feature selection algorithms and 

machine learning classifiers. The predictive power, accuracy, 

sensitivity, specificity, and PR_AUC of the best 10 methods in 

distinguishing two genotypes of grade-4 astrocytomas are 

summarized in Table 1.  
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Table 1: Best ten performances of multi-machine learning algorithms, feature selection, and multi-segmentation 

approaches in discriminating IDH-mutant grade-4 astrocytomas from IDH wild-type GBMs using original (Or) data set. 

 

Radiomic Feature Combination AUC Accuracy Sensitivity Specificity PR_AUC 

Or_PC_T1_Core_AB_Kbest 0.93 0.92 1 0.86 0.92 

Or_PC_T1_Core_KN_Kbest 0.93 0.92 1 0.86 0.92 

Or_PC_T1_Core_LR_Kbest 0.93 0.92 1 0.86 0.92 

Or_PC_T1_Core_MLP_Kbest 0.93 0.92 1 0.86 0.92 

Or_T2-FLAIR_Enhancing_DT_Kbest 0.93 0.92 1 0.86 0.92 

Or_T2-FLAIR _Enhancing_DT_mRmR 0.93 0.92 1 0.86 0.92 

Or_T2-FLAIR _Enhancing_GB_mRmR 0.93 0.92 1 0.86 0.92 

Or_T2-FLAIR _Enhancing_RF_mRmR 0.93 0.92 1 0.86 0.92 

Or_PC_T1_ Enhancing_HGB_RFE 0.93 0.92 1 0.86 0.92 

Or_PC_T1_ Enhancing_HGB_mRmR 0.93 0.92 1 0.86 0.92 
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The relative importance of the best 10 methods in terms of 

predictive power, accuracy, sensitivity, specificity, and PR_AUC 

in discriminating two genotypes of grade-4 astrocytomas by 

using various combinations of feature selection algorithms, 

machine learning classifiers, and segmented image regions from 

80%, 50%, and 30% of the generated data as training sets are 

summarized in Tables 2, 3, and 4, respectively. From generated 

data using 80% training set (Table 2), core regions overlaid on 

post-contrast T1 images with Kbest and RFE feature selection 

and GNB and PA classifier and enhancing regions overlaid on 

T2-FLAIR images with Kbset feature selection and DT and 

Bagging classifier provided the best discriminatory power 

(AUC=0.93, accuracy =0.92, sensitivity =1, specificity =0.86, 

and PR_AUC= 0.92) in distinguishing two genotypes of grade-4 

astrocytomas. From generated data using a 50% training set 

(Table 3), necrosis regions of co-registered post-contrast T1 

image with mRmR feature selection and Bagging and RF 

classifier and edematous core of co-registered post-contrast T1 

image with Kbest feature selection and KN classifier provided 

the highest predictive power (AUC=0.92, accuracy =0.92, 

sensitivity =0.91, specificity =0.94, and PR_AUC=0.93). From 

generated data using a 30% training set (Table 4), the core 

regions of co-registered post-contrast T1 image with K-best 

feature selection and LR classifier provided the highest 

predictive power (AUC=0.91, accuracy =0.92, sensitivity =0.86, 

specificity =0.96, and PR_AUC=0.92).  
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Table 2: Best ten performances of multi-machine learning algorithms, feature selection, and multi-segmentation approach in discriminating IDH-mutant 

grade-4 astrocytomas from IDH wild-type GBMs using generated (Ge) data with 80% training set. 
 

Radiomic Feature Combination AUC Accuracy Sensitivity Specificity PR_AUC 

Ge_PC_T1_Core_GNB_Kbest 0.93 0.92 1 0.86 0.92 

Ge_PC_T1_Core_PA_RFE 0.93 0.92 1 0.86 0.92 

Ge_T2_FLAIR_Enhancing_Bagging_Kbest 0.93 0.92 1 0.86 0.92 

Ge_T2_FLAIR_Enhancing _DT_Kbest 0.93 0.92 1 0.86 0.92 

Ge_T2_FLAIR_Whole _AB_Kbest 0.90 0.92 0.80 1 0.94 

Ge_PC_T1_Core_RF_Kbest 0.90 0.92 0.80 1 0.94 

Ge_PC_T1_Core_RF_RFE 0.90 0.92 0.80 1 0.94 

Ge_PC_T1_Core_HGB_Kbest 0.90 0.92 0.80 1 0.94 

Ge_PC_T1_Edema_AB_Kbest 0.90 0.92 0.80 1 0.94 

Ge_PC_T1_Edema_Bagging_Kbest 0.90 0.92 0.80 1 0.94 

 

Table 3: Best ten performances of multi-machine learning algorithms, feature selection, and multi-segmentation approach in discriminating IDH-mutant 

grade-4 astrocytomas from IDH wild-type GBMs using generated (Ge) data with 50% training set. 
 

Radiomic Feature Combination AUC Accuracy Sensitivity Specificity PR_AUC 

Ge_PC_T1_ Necrosis_Bagging_mRmR 0.92 0.92 0.91 0.94 0.93 

Ge_PC_T1_ Necrosis_RF_mRmR 0.92 0.92 0.91 0.94 0.93 

Ge_PC_T1_ Edema_KN_mRmR 0.92 0.92 0.91 0.94 0.93 

Ge_PC_T1_ Necrosis_KN_RFE 0.89 0.89 0.91 0.87 0.89 

Ge_PC_T1_ Edema_HGB_RFE 0.89 0.89 0.91 0.87 0.89 

Ge_PC_T1_ Necrosis_KN_RFE 0.88 0.89 0.82 0.94 0.90 

Ge_PC_T1_ Necrosis_KN_RFE 0.88 0.89 0.82 0.94 0.90 

Ge_PC_T1_ Edema_HGB_RFE 0.88 0.89 0.82 0.94 0.90 

Ge_PC_T1_ Edema_HGB_RFE 0.88 0.89 0.82 0.94 0.90 

Ge_PC_T1_ Core_KN_RFE 0.88 0.89 0.82 0.94 0.90 

 

Table 4: Best ten performances of multi-machine learning algorithms, feature selection, and multi-segmentation approach in discriminating IDH-mutant 

grade-4 astrocytomas from IDH wild-type GBMs using generated (Ge) data with 30% training set. 
 

Radiomic Feature Combination AUC Accuracy Sensitivity Specificity PR_AUC 

Ge_PC_T1_ Core_LR_Kbest 0.91 0.92 0.86 0.96 0.92 

Ge_PC_T1_ Core_Ridge_Kbest 0.89 0.89 0.86 0.92 0.88 

Ge_PC_T1_ Core_SVC_mRmR 0.86 0.89 0.71 1 0.91 

Ge_PC_T1_ Core_LDA_Kbest 0.84 0.84 0.86 0.83 0.83 

Ge_T2_FLAIR_Core_HGB_Kbest 0.82 0.79 0.93 0.71 0.80 

Ge_T2_FLAIR_Core_LR_Kbest 0.81 0.84 0.71 0.92 0.83 

Ge_PC_T1_ Edema_GB_Kbest 0.81 0.84 0.71 0.92 0.83 

Ge_T2_FLAIR_Core_LDA_Kbest 0.81 0.81 0.78 0.83 0.80 

Ge_T2_FLAIR_Core_Ridge_Kbest 0.81 0.81 0.78 0.83 0.80 

Ge_PC_T1_ Enhancing_QDA_Kbest 0.80 0.79 0.86 0.75 0.79 



Prime Archives in Cancer Research: 3rd Edition 

16                                                                                www.videleaf.com 

Heatmaps of predictive power (AUC), predictive accuracy 

(ACC), sensitivity (SEN), and specificity (SPE) for 

discriminating IDH-mutant grade- 4 astrocytomas from IDH 

wild-type GBMs utilizing a variety of feature selection (training 

set equal to 80%), and machine learning algorithms applied to 

distinct subregions of neoplasms are shown in Figures 4-7 

respectively. In addition, the comprehensive findings from multi-

machine learning algorithms, feature selection, and multi-

segmentation approach in discriminating IDH-mutant grade-4 

astrocytomas from IDH wild-type GBMs of original and 

generated data with different training and testing sets are 

provided in the supplementary file. 

 

 
 
Figure 4: Area under the ROC curve (AUC, predictive power) heatmap using a 

variety of combinations of anatomical images, tumor habitats, radiomic 

features and machine learning classifiers in differentiating IDH-mutant grade- 4 

astrocytomas from IDH wild-type GBMs. 

 



Prime Archives in Cancer Research: 3rd Edition 

17                                                                                www.videleaf.com 

 
Figure 5: Accuracy (ACC) heatmap using a variety of combinations of 

anatomical images, tumor habitats, radiomic features and machine learning 

classifiers in differentiating IDH-mutant grade- 4 astrocytomas from IDH wild-

type GBMs. 
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Figure 6: Sensitivity heatmap using a variety of combinations of anatomical 

images, tumor habitats, radiomic features and machine learning classifiers in 

differentiating IDH-mutant grade- 4 astrocytomas from IDH wild-type GBMs. 
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Figure 7: Specificity heatmap using a variety of combinations of anatomical 

images, tumor habitats, radiomic features and machine learning classifiers in 

differentiating IDH-mutant grade- 4 astrocytomas from IDH wild-type GBMs. 
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Discussion  
 

In this study, we investigated the clinical utility of a 

conventional neuroimaging-based radiomics approach with deep 

learning in determining the IDH status of astrocytomas. A total 

of 1050 radiomic features were extracted from different tumor 

habitats (solid/contrast enhancing, central necrotic, peritumoral 

edematous, core tumor, and whole tumor regions), encompassing 

post-contrast T1 weighted and T2-FLAIR images. Our work is 

an extension of previous studies as we used GAN based 

algorithm to increase our sample size and a large number of 

machine learning classifiers (n=18) to build a reliable prediction 

model in distinguishing IDH mutant grade-4 astrocytomas and 

IDH wild-type GBMs. In the validating cohort, our best 

prediction model consisted of central necrotic region and whole 

tumor volumes from post-contrast T1 weighted images when a 

combination of mRmR radiomic feature extraction algorithm and 

GB machine learning classifier were used together. This 

prediction model achieved a high diagnostic performance 

(AUC=0.93, accuracy=0.92, sensitivity=1, specificity=0.86, 

PR_AUC=0.92) in discriminating two genotypes of grade-4 

astrocytomas.  

 

IDH mutation has been recognized as one of the most important 

molecular markers for diagnosing gliomas and GBMs based on 

the 2016 WHO classification [4]. In addition, according to the 

recent 2021 WHO classification of tumors of the central nervous 

system (CNS) [6], previously called IDH mutant, GBM is now 

designated as IDH-mutant grade-4 astrocytoma, and GBM is 

diagnosed in the setting of IDH wild-type status. It has been 

reported that IDH mutational status is an independent favorable 

prognostic factor for conferring longer progression-free and 

overall survivals in GBM patients [7,8]. Moreover, patients with 

IDH mutant grade-4 gliomas have been shown to exhibit a better 

prognosis than those with IDH wild-type grade-3 gliomas. 

Collectively, these clinical findings emphasize the importance of 

determining IDH mutant status in grade-4 astrocytomas [43]. 

The immunohistochemical assay is the most commonly used 

method for assessing IDH mutation status following invasive 

surgical interventions, which are associated with operative risks 
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[44,45]. Moreover, the possibility of sampling error is highly 

relevant to determining histological grade [46] and molecular 

profiling [11,46]. For example, IDH sequencing may be falsely 

negative if there are few glioma cells present within a tumor 

specimen [46] or substantial genetic heterogeneity occurs within 

the tumor specimen [11]. In addition, some exome sequencing 

studies have reported that traditional immunohistochemical 

assays do not detect IDH mutant status in ~15% of gliomas [47]. 

Therefore, it is essential to develop non-invasive and objective 

imaging biomarkers for identifying IDH mutant status in 

gliomas.  

 

Mechanistically, wild-type IDH normally catalyzes the 

reversible, NADP+-dependent oxidative decarboxylation of 

isocitrate to alpha-ketoglutarate (α-KG) in the TCA cycle. 

However, IDH mutations confer a neomorphic enzyme activity 

converting α-KG to 2HG. Therefore, the oncometabolite 2HG 

has been proposed as a putative biomarker for IDH-specific 

genetic profiles for gliomas. A few studies have employed 

sophisticated spectroscopic sequences and post-processing tools 

for detecting spectral resonances of 2HG from IDH mutant 

gliomas [15,48-50]. However, the non-availability of these 

sequences and tools in routine clinical settings renders these 

techniques less attractive. Moreover, diagnostic challenges may 

also arise because of the presence of a high degree of genetic 

heterogeneity within GBMs and partial sampling of these 

lesions, especially when single voxel spectroscopic methods are 

employed. In contrast, conventional MRI is a widely available, 

fast, easy-to-use, and economically affordable imaging modality 

that provides valuable information about brain tumor structural 

and morphological characteristics. Qualitative imaging features 

such as frontal lobe tumor location, homogeneous signal 

intensity, sparse contrast enhancement within the tumor beds, 

and less intensive tumor infiltration are some of the imaging 

characteristics that have been used to identify IDH mutant 

gliomas with variable success [51-53]. However, all these 

qualitative associations were largely based on univariate 

analyses and hence, were prone to interrater variably. Therefore, 

a comprehensive analysis of imaging features is warranted for 
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reliable prediction of IDH mutation status in spatially and 

temporally heterogeneous GBMs.  

 

Radiomics is a quantitative analytical method of medical images 

that provides information that is generally difficult to perceive 

by visual inspection. Compared to conventional analytical 

approaches, radiomics analysis can provide a more efficient and 

unbiased quantification of imaging information. Readily 

interpretable and quantitative features such as intensity 

distributions, spatial relationships, textural heterogeneity, and 

shape descriptors are extracted from a pre-defined ROI 

encompassing both solid and peritumoral regions of neoplasms 

in a typical fashion [54]. The training cohort is used to instruct 

the computer algorithm to detect patterns of features that are 

subsequently examined in a validation cohort to evaluate the 

algorithm’s performance in correctly predicting the presence or 

absence of a feature and its association with an outcome. In the 

recent past, the field of radiogenomics has been established to 

study the relationship between imaging features and underlying 

molecular processes and characteristics. Recently, it has been 

widely reported that radiomics/radiogenomics aids in guiding 

clinical decision-making in neuro-oncology, particularly for 

making an accurate diagnosis, prognosis, and response 

assessment [26-30,55].  

 

IDH mutation occurs only in 10% of grade-4 astrocytomas, so 

we could only include data from 23 IDH mutant cases in the 

present study. Because of this small sample size and imbalance 

in data distribution, our data was prone to overfitting. 

Furthermore, in situations with an insufficient number of training 

data sets, the model is often overtrained. Consequently, the 

model performs well during the training stage but comparatively 

poorly during the subsequent testing stage. To address this 

challenge of small sample size, we leveraged the use of a well-

established GAN method for synthesizing high-quality images 

and, in turn, raising the total sample size from 57 to 200. GAN is 

a deep learning architecture in which two neural networks 

compete against each other in a zero-sum game framework [56]. 

A GAN model consists of two components: a generator and a 

discriminator. In the training stage, the data sets produced by the 
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generator, along with real images, serve as inputs to the 

discriminator. This can be considered comparable to enlarging 

the training datasets for the discriminator, whose purpose is to 

differentiate real from the generated images [57]. Consequently, 

the discriminator will not immediately succumb to overfitting 

through the competitive relationship between these two 

networks, even when a limited number of training samples are 

used.  

 

In a previous study [58], when a random forest classifier was 

applied to a mixed population of grade-III and grade-IV gliomas, 

high accuracies (86-89%) were observed in identifying IDH 

mutation status. In the present study, only a histologically 

homogenous population of gliomas (grade-IV astrocytomas) was 

included. Moreover, numerous radiomics features and machine 

learning classifiers were applied to predict IDH mutation status. 

Tumor necrosis was recognized as an important imaging feature 

and contributed most to the prediction model for distinguishing 

IDH mutant grade-4 astrocytomas from IDH wild-type GBMs 

when the Kbest radiomics feature algorithm and decision tree 

(DT) classifier was used together. This finding is in agreement 

with an earlier study [58] in which IDH mutation was associated 

with a smaller enhancing volume and a larger necrotic volume 

when multiparametric radiomic profiles were analyzed. 

Additionally, imaging features from whole tumor volumes were 

found to be associated with IDH mutation status when the Kbest 

radiomics feature selection algorithm, and AB classifier were 

used together (AUC= 0.93). This finding may be explained by 

the fact that IDH mutant gliomas have a more heterogeneous 

imaging microenvironment because of their stepwise 

gliomagenesis [59]. Our findings are also consistent with 

previous studies that have reported a larger tumor volume [60] 

and a lower degree of cellularity [61] in IDH mutants than in 

IDH wild-type gliomas. Our results and published findings 

indicate that quantitative radiomics features can predict the IDH 

mutation status of grade-4 astrocytomas with high diagnostic 

power.  

 

Our findings warrant further validation in multicentric, 

prospective studies with larger patient populations. In 
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conclusion, a prediction model based on conventional MRI-

extracted radiomic features achieved promising diagnostic power 

in distinguishing IDH mutant grade-4 astrocytomas from IDH 

wild-type GBMs. 

 

Conclusions  
 

In conclusion, a prediction model based on conventional MRI-

extracted radiomic features achieved promising diagnostic power 

in distinguishing IDH mutant grade-4 astrocytomas from IDH 

wild-type GBMs. 
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