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Introduction

In the field of science and engineering research, it is difficult to obtain the analytical
solutions of many differential equations, so it is particularly necessary for researchers to
design effective numerical solutions to differential equations. In order to facilitate the
study of these different forms of differential equations, scholars express these differential
equations as operators in a specific space. Different problems correspond to different
operator structures, and designing effective numerical algorithms for operator equations
has become an important means to solve problems.

Reproducing kernel space is a field in functional analysis, which is a special Hilbert
space since its proposal in the 1980s, scholars have become active in studying the ap-
plication of the theory of reproducing kernel and related methods. People have found
that it can be applied in many aspects, such as signal processing, numerical solutions
of differential equations, image processing, etc. In recent years, there have been many
international literature discussing the application prospects of regenerative kernels.

The simplified reproducing kernel method avoids the process of Schmidt orthogo-
nalization to obtain spatial bases, and has advantages such as spatial reproducibility and
controllable regularity. It has become one of the main directions for scholars to study the
theory of reproducing kernels in recent years. As an important mathematical tool in sci-
entific and engineering calculations, the Regenerative Kernel Method is mainly studied in
this book for several special numerical algorithms of differential equations. It provides a
detailed analysis and introduction to the algorithm principle, stability, convergence, error
analysis, applicability, and advantages and disadvantages of the simplified Regenerative
Kernel Method. The publication of this academic monograph can provide readers with a
deeper and more accurate understanding of the theory of regenerative nuclei.

I was able to complete the writing of this book without the help of my teacher and
workplace. Firstly, I would like to express my special gratitude to my research supervisor
Professor Lin Yingzhen. Professor Lin has led me into the academic arena, allowing me
to appreciate the charm of mathematics. His rigorous thinking and teaching spirit have
deeply influenced me. Secondly, I would like to express my gratitude to my employer-
Zhuhai College, Beijing Institute of Technology. The publication of this book is insep-
arable from the support and funding of the institution. The book was jointly funded by

the Guangdong Provincial Department of Education’s General University Characteristic
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Innovation Project (2023KTSCX183) and the Zhuhai Basic and Applied Basic Research
Project (ZH2201700320026PWC) in Guangdong Province, China. Finally, thank you to
the staff who reviewed and published this book!

Due to the limited research level of the author, there must be many shortcomings
and errors in this book. We sincerely request readers to correct them for further revisions

in the future.

Liangcai Mei
Autumn 2023
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Chapter 1 Introduction to reproducing kernel method

1.1 The background and significance of writing

Differential equations are one of the most important mathematical methods and tools
for describing the basic laws of physics, and have important significance in scientific and
engineering research. They are commonly used to model complex systems under non
ideal conditions, such as fluid motion, wave propagation, and price evolution of stocks and
options. However, analytical solutions to most differential equations are difficult to obtain,
so researchers generally consider obtaining approximate solutions to the equations.

Although the research field of numerical solutions for differential equations is very
active and full of lasting vitality, there are still many differential equations in the field of
technology that cannot obtain analytical solutions and good approximate solutions. On
the other hand, the accuracy, convergence order, stability, and computational efficiency
of numerical solutions for differential equations still require continuous exploration by
scholars. How to design numerical algorithms for differential equations with high accu-
racy and strong stability is still one of the hot topics studied by scholars.

Differential equations include various forms such as ordinary differential equation-
s, partial differential equations, calculus equations, fractional differential equations, etc.
The definite solution conditions also include various mixed forms such as multi-point
boundary values, integral boundary values, and differential boundary values. In order to
facilitate the study of these different forms of differential equations, scholars have sum-
marized these equations into a unified operator equation form in different spaces. In the
field of engineering applications, different natural phenomena can be characterized by d-
ifferent manifestations of linear and nonlinear operators in operator equations. Therefore,
the theoretical analysis and numerical solution of operator equations have a wide range of
practical application backgrounds, whether in mathematical research fields such as func-
tional analysis and numerical analysis, or in technological engineering applications such
as geophysical inversion, non fluid mechanics, and ultrasonic testing, the study of nu-
merical solutions of operator equations has a very important position and a wide research

space.
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From the perspective of practical applications, the study of numerical solutions for
operator equations is necessary in the field of natural science applications. For example,
in the field of biology, in a single population differential equation model, if an approxi-
mate solution can be obtained using numerical methods, it can more accurately reflect the
changes in population size over time. The numerical solution of the predator-prey model
can approximate the changes between prey and predator, and these changes are beneficial
for humans to explore the mysteries of nature more efficiently.

From the perspective of numerical solution methods for differential equations, dif-
ferent numerical solutions for operator equations are beneficial for improving the approx-
imation and stability of approximate solutions. The commonly used research methods for
numerical solutions of operator equations include variational methods, finite difference
methods, etc. Based on the specific forms of operator equations, scholars are gradually
proposing various numerical solutions. Especially since the 1980s, applied reproducing
kernel spaces have been proposed, and various reproducing kernel solving algorithms
have been developed both domestically and internationally. They have also solved some
linear and nonlinear operator equation numerical algorithm problems.

From the perspective of the development of mathematics itself, the proposal of new
solutions to operator equations is conducive to promoting the further development of
mathematical theory in functional analysis, differential equations, scientific calculations,
and other fields. The concept of reproducing kernel was proposed by scholar Zaremba in
1908. After more than a hundred years of development, the theory of reproducing kernel
has continuously developed as a new mathematical theory for solving differential and in-
tegral operator equations. In the field of scientific computing, the theory of reproducing
kernel has attracted the attention of many scholars due to its computational advantages of
reproducing.

The reproducing kernel method 1s named after its reproducing property in spatial in-
ner product operations. Compared with other numerical methods, the reproducing kernel
method has the characteristic of regularity and controllability, which is very advantageous
for solving special physical models with limited smoothness of solutions. In addition, the
reproducing kernel method can flexibly construct a reproducing kernel space that satisfies
the definite solution conditions when solving differential equations, so that the construct-
ed space can describe some properties of the definite solution, which is very advantageous

for characterizing the characteristics of the model.
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In summary, considering the wide application background of numerical solutions for
operator equations and the theory of reproducing kernels, this book proposes some new
numerical algorithms based on the simplified theory of reproducing kernel space, and
conducts numerical solution research on some operator equations. Therefore, this book

has certain academic value both in terms of fundamental theory and practical application.

1.2 The generation and development of reproducing kernel theory

reproducing kernel space is a unique type of Hilbert function space, named by schol-
ars due to the existence of a reproducible kernel function R(x, y) in the space. Any function
f(x) has a reproducible property in the form of Eq. in the spatial product operation,
which brings convenience to calculations. In the early 19th century, Bergmann™! first
introduced the concept and expression of the reproducing kernel, forming the definition
from space to inner product and then to reproducing kernel. The reproducing kernel was

also developed as a computational method for solving operator equations.

JO) = (%), R(x,y) (1-1)
(1) Reproducing kernel in segmented exponential stage
In 1986, Cuil! proposed the reproducing kernel space W) [a,b] and its piecewise
exponential expression of the kernel function, which is a landmark starting point in the
study of reproducing kernel theory, opening up a new direction for numerical analysis and
laying a theoretical framework for the subsequent use of reproducing kernels in numerical
analysis.

The regenerated kernel space W, [a, b] is as follows
Wzl la, b] = {u(x) |u(x)1is is absolutely continuous on|a, b], u'(x) € L[a, b))

and its inner product is
b

b
(u(x), v(x))W:} = f u(x)v(x)dx+f u'(x' (x)dx, u,ve W21 [a, b]

a a

In addition, to meet the needs of numerical calculations, Cui®! also provided an

expression for the reproducing kernel space WY' [a, b] with a piecewise exponential form

Yeet,  x<y
R(x,y) = 1" ) (1-2)
2 diy)e™, x>y

=0

Based on the piecewise exponential form (Eq. (1-2)) ) of reproducing kernel, Wu!,

5 www.videleaf.com



Simplified Reproducing Kernel Space Theory and Its Applications

YanP!, Lit! and others have provided various types of reproducing kernel spaces and their
kernel functions, which are used to numerically solve some operator equations. Although
the reproducing kernel in the segmented exponential stage can be represented by an an-
alytical function, the e in Eq. (I-2) is an irrational number, which leads to shortcomings
such as high computational complexity, long processing time, and high computational
speed. Scholars have to seek a more concise way to construct the reproducing kernel.

(2) Reproducing kernel in segmented polynomial stage

In 2008, Wu, Lin, and others provided a unified inner product form in the reproduc-
ing kernel space HY' [a, b] and obtained the piecewise polynomial form of the reproducing
kernel, marking the starting point of research on piecewise polynomial reproducing ker-

nels.
HY'[a,b] = {u(x)u" P (x)is is absolutely continuous on[a, b], u,,(x) € L,[a, b]}

and its inner product is
m—1

(), vy = Y wl@via) + f b u™ (o™ (x)d x
i=0 a
Wu and Lin"! authored “Applied Reproducing Kernel Space”, in which they fully
proved that reproducing kernel space H7' [a, D] is equivalent to reproducing kernel space
W3 [a, b] given by Cui. From a numerical perspective, using polynomial producing ker-
nel in space HY' [a, b] can compensate for the shortcomings of exponential reproducing
kernel. In addition, Wu and Lin!! systematically introduced the construction process of
polynomial reproducing kernels in their compilation, and applied the construction idea
to many reproducing kernel spaces, such as periodic boundary value reproducing kernel
spaces, integral boundary value reproducing kernel spaces, weighted reproducing kernel
spaces, etc. They solved various types
S e, x<y
R(x,y) = 4% _ (1-3)
E) di(y)x', x>y
Since R (x,y) is in the form of polynomials in different situations, theoretically Eq.
(T-3)) is the simplest type of reproducing kernel, and the computational complexity is
greatly reduced compared to exponential reproducing kernels. Scholars have begun to
use polynomial kernels to solve more complex initial boundary value problems!™ !,

Jiah" et al. obtained a unified expression for the regeneration kernel space H3' [a, b]
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and obtained several properties related to the regeneration kernel. Geng'!!, Niul'%!, and
Li ™ used a combination of polynomial regeneration kernel method and other methods
to solve various operator equations.

The exact solution of the equation obtained by the piecewise polynomial reproducing
kernel method generally has the expression form Eq. (I-4) .

u(x) = > > Buf (6 g (%) (1-4)
i=1 k=1

In the exact solution u (x), B 1s the orthogonalization coefficient, and {;[/H,’}:-)il 18 the
standard orthogonal system after Schmidt orthogonalization. WulZ et al. provided a
detailed description of the theoretical properties and algorithm steps related to Schmidt
orthogonalization in the literature. The calculation of ; mainly relies on the following
formula

Wi = 1 —
|lepri — El(!l’ia'ﬂi)'lffﬂ

From the above equation, it can be seen that in the Schmidt orthogonalization pro-

-1
i — 51(%’ Yini

cess, calculating each function Wi (x) requires multiple operations such as inner product,
product, and sum, and involves quotient operations with norm. It can be seen that Schmidt
orthogonalization is a very tedious process. This method of constructing standard orthog-
onal bases through Schmidt orthogonalization is slightly more complex, resulting in long
computational time for solving high-order problems, and even inability to calculate ideal
results.

(3) Research progress on simplified regeneration accounting method

Considering the complexity of Schmidt orthogonalization calculation process, in
recent years, Lin™™* has constructed a simplified reproducing kernel method, which avoids
the calculation process of Schmidt orthogonalization and cleverly utilizes the reproducing
property of the reproducing kernel to obtain numerical solutions of differential equations
by solving linear equations. Compared to the traditional reproducing kernel method, this
algorithm has advantages such as bounded reproducing kernels, intuitive algorithms, and
easy programming experiments. Based on this simplified reproducing kernel method,
many scholars have studied the numerical solutions of various operator equations through
different reproducing kernel spaces. The exact solutions obtained from the simplified

reproducing kernel space generally take the form of Eq. (I-3]) .
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(s5e}

u(x) =) e (x) (1-5)

k=1
Zhao!™! solved a numerical solution problem for a class of high-order linear differ-

ential Eq. (]EI) using the simplified reproducing kernel method in space W1 [a, b], and
proposed several property theories for the convergence order of the algorithm.

U D (x) +a () u" P () + o+ A (D u(x) = f(x)

Tlu :O,TQM = 0, ,Tm,lu =0

(1-6)

Xul'® et al. proposed a simplified reproducing kernel method to numerically solve
the one-dimensional elliptical interface Eq. (I-7)) , which is actually a second-order linear
differential equation with discontinuous coefficients. The author also demonstrated the

stability of the algorithm.

Biu') —yiu=fix),0<x<a
Bou') —you=fr(x), @ <x <1 (1-7)
u@ =a u(l)y=>=
Eq. satisfies the following interface conditions
[u]le = u(@™) —ula) =0
[Bi']le = B2 (@) u(a) =B (@) @) =0

Xul 181 ysed the simplified reproducing kernel method to numerically solve the
nonlinear fractional order model and the nonlinear fractional order delay model, respec-
tively. In addition, Niu"™® used the reproducing kernel method to solve several types of
nonlinear singular boundary value problems.

In addition, with the proposal of various research methods, scholars are increasing-
ly focusing on the idea of integrating various algorithm theories to solve problems, and
leveraging the advantages of various algorithms to construct new algorithms has become
a new research trend. Zhang!®’! and Zheng!*!! have proposed various numerical solutions
for solving linear operator equations by combining multi-scale orthogonality and com-
pactness with simplified reproducing kernel methods.

In recent years, the theory of reproducing kernel space has not only received atten-
tion from scholars in the field of numerical analysis, but has also made significant progress
in application fields. The theory of reproducing kernel has been successfully applied in
image processing, signal analysis, machine learning, pattern recognition, and other field-

s. The theory of reproducing kernels is of great significance for exploring natural laws,
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especially in today’s rapidly developing artificial intelligence and big data technologies.
The research of reproducing kernels in fields such as machine learning and deep data
mining has also attracted the attention of many scholars. Hao!*4! et al. combined the
multi-scale reproducing kernel method with convolutional neural networks and applied
it to single-cell image classification problems. This method can be widely applied in

artificial intelligence fields such as facial recognition.

1.3 The main work of this book

The main content and structure of this book are as follows:

In chapter 1, firstly, outlines the background and research significance of the writing
of this book. Secondly, the writing foundation of this book is introduced from the intro-
duction of operator equations and the current research status of reproducing kernel theory.
Finally, the main work of writing this book is summarized.

In chapter 2, the definition and properties of the reproducing kernel space are first
introduced, and the general form of the new reproducing kernel space W"[a, b] and its
kernel function R(x,y) is given through lemma. Secondly, the construction principle of
discontinuous regenerative kernel space is presented.

In chapter 3, we have considered the reproducing kernel method for second-order
impulsive differential equations as follows

u”(x) + ar(x)u'(x) + ap(x)u(x) = f(x), x € (a,b)\{c}
u(a) = ay, ub) = as
Au'(c) = as, Au(c) = ay

where, Au'(c¢) = u'(¢*) — u'(c7), az and a4 are not at the same time as 0. ¢;(x) and f(x)
are known function, a; € R, j = 1,2,3,4. The main idea of this method is to establish a
non-smooth reproducing kernel space that can be used in pulse models. And the uniform
convergence of the numerical solution is proved, the time consuming Schmidt orthogo-
nalization process is avoided. The algorithm is proved to be feasible and effective through
some numerical examples.

In chapter 4, we consider the reproducing kernel method for the following second-

order nonlinear impulsive differential equations
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u”(x) + ay(x)u'(x) + ap(X)u(x) + N(u) = f(x), x¢€la,b]\{c}

u(a) = ay,u(b) = ar, Au'(c) = a3, Au(c) = ay

where, Au'(c) = u'(¢*) — u'(¢7), a3 and a4 are not at the same time as 0. «;(x) and f(x)
are known function, N' : R — R is a continuous function, «; € R, j = 1,2,3,4. This
method combines the reproducing kernel method with the least squares method to solve
the second-order nonlinear impulsive differential equations. Then the uniform conver-
gence of the numerical solution is proved, and the time consuming Schmidt orthogonal-
ization process is avoided. The algorithm is employed successfully on some numerical
examples.

In chapter 5, the simplified reproducing kernel method is developed to obtain stable
numerical solutions of second-order boundary value problems of the following Fredholm

integro-differential equation.

1
u’(s) + p(Hu'(s) + g(s)u(s) + /lf k(s, Hu(t)dt = f(s), se€[0,1],
0

u)=a, u(l)=4.

where, A, @, 8 are real constants, p(s), g(s) are two known functions, f(s) € L*([0, 1]) and
k(s,t) € C([0, 11x[0, 1]) are given, and u(s) is an unknown function to be determined. The
convergence analysis of the method and the condition number of the matrix are also dis-
cussed. The proposed method is proved to be stable and have second order convergence.
The algorithm is employed successfully in some numerical examples.

In chapter 6, based on the reproducing kernel direct sum space, the numerical solu-

tions of linear Volterra integral equations with varying coefficients are studied

an () = by f kG Dy (et + anp ()00 = bro f k(e 0 f(0dt = w0 ()

0 0

a (x)fi(x) — bzlf ky (x, 1) fi(B)dt + ax(x) fr(x) — bzz] koy(x, 1) fo(t)dt = u>(x)
0

0
where, a;;(x),1, j = 1,2 are smooth functions defined on [0,1], and b;;,, j = 1,2 are given
constants. This chapter establishes a reproducing kernel direct sum space that can be used
for integral operator equations based on the simplified reproducing kernel method. The
convergence order calculation formula is defined based on Euclidean distance, and the
convergence order and stability of the numerical algorithm are analyzed. The stability of

the method is proved, and it is not less than second-order convergence.
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Chapter 2 Basic theory of reproducing kernel space

This chapter mainly introduces the basic knowledge about reproducing kernel s-
paces, provides the construction process and basic properties of discontinuous reproduc-
ing kernel spaces, and provides a knowledge overview for the algorithm construction in

subsequent chapters.

2.1 Reproducing kernel space

Lemma 2.1 ) If W is a Hilbert space and the elements in W are complex valued functions
defined on the set X, then the following two propositions are equivalent:

(1) Yx € X, there is a positive number C,, so that

fOl < Clfll, feH

(2) Vx € X, there exists a unique function K,(y) € H such that

([(Ko=fx), feH
Definition 2.1 7! If Hilbert space W satisfies the lemma[2.1], then W is called the repro-

ducing kernel space, and the binary function
K(x,y) = K(x)
1s called the reproducing kernel of W.
Some basic properties of reproducing kernel functions and reproducing kernel s-
paces, such as uniqueness and conjugate symmetry, can be found in ref.[7] or related
literature on reproducing kernel. Below are two very classic lemmas about simplified

reproducing kernel methods.
Lemma 2.2 U

Wi'la, b] = [u(0)|uV(x) is absolutely continuous on[a, b, u™(x) € L*(a, b))

the space WY'[a, b] has the following inner product form

m—1

b
(u,v)%n = Z u® (@ (a) + f u™ o™ (x)dx, u,v € Wi'la, b]
k=0 a
and the norm 1s defined as

”M”Wi," = \,(ua M)W"{r ’ ue ng[aa b]
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then
(1) Wi'[a, b]is a Hilbert space;
(2) Wi'la, blis a reproducing kernel space.

Lemma 2.3 " The reproducing kernel funciton of W}'[a, b] is

m—1 ; . .
(JC _ a)t P (X _ a)melfr (y _ a)[
;( e L R

Ry(x) = R(x,y) = (2-1)

m—1

— )i _ g\2m=1-i — )
SO G
i=0 :

Cm-1-9!" 1!
Lemma([2.2]and lemma [2.3| provide a new definition of reproducing kernel space and
a general expression (Eq. (2-1) ) of the reproducing kernel function R(x,y). The relevant

conclusions will play an important role in the subsequent chapters of this book.

2.2 Discontinuous reproducing kernel space

From Eq. , it can be seen that when using traditional reproducing kernel s-
pace for numerical calculations, it is required that the true or approximate solution of the
problem must be smooth. However, in the field of engineering research, there are many
instances of unsmooth model true solutions and their derivatives, and even intermittent
phenomena at local points, known as pulse phenomena.

Pulse phenomenon is also a type of intermittent problem. In solving problems con-
taining intermittent phenomena, Reed and Hill proposed the discontinuous finite elemen-
t method as early as 1973 to solve neutron transport equation problems!=!. In 1974,
Lesaint!*!! applied the discontinuous finite element method to solve ordinary differential
equations. The proposed method adopted different mesh forms for different elements and
had the ability to flexibly handle the discontinuity at the intersection of each elemen-
t. Subsequently, the discontinuous finite element method gradually gained widespread
attention from scholars in dealing with the problem of piecewise discontinuity!#>!,

The traditional reproducing kernel method cannot directly solve the pulse problem.
In this chapter, using the idea of discontinuous finite element and ingeniously designing,
the pulse point is used as a bridge to connect two or more spaces, constructing a space with
piecewise smooth characteristics, which is called the discontinuous reproducing kernel
space.

Assuming there is a pulse point ¢ on the interval [a, b], and a reproducing kernel s-
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pace Wg la, c] (W3 for short). W2l la, c] (W] for short) and its inner product is given by the
lemmal[2.2]. The reproducing kernel functions of W3 and W! are R%(x) and r(x), respec-
tively. Similarly, the reproducing kernel space W [c, b](W; for short) and W, [c, bI(W} for
short) can be obtained its reproducing kernel functions R,] (x) and rr] (x), respectively.

Definition 2.2 The linear space Wi(, 1s defined as
WS,C[aa b] = {M(X)'M(X) = MO(X)'; X € [aa C): M(X) = MI(X), X e (C, b]}
where, uy(x) € WS, u(x) € Wff . The inner product and norm are defined as

3
(H, V)W;.EA = <M0, vO)Wg + <u]a Vl)Wgs u,v € WQ‘C[aa b]

3
lullw; = \Jwwyy: . we W; [a, D]

In summary, for each u(x) € Wg’t_[a, b] has the following form

up(x), x<c
u(x) =
u(x), x=c
where, uy(x) € Ws,ul(x) € Wg.
Theorem 2.1 Wic [a, P] is a inner space.

Proof: Here we only prove that the distributive law operation is satisfied, and other inner
product definition conditions can be similarly proven.
Vu,v e W, [a,b]
(u+v, w)wg‘(l = up + vo, woys + (up + vy, Wl>wg
= (U, Wodws + (vo, Wo)ws + (ulswl)wg + V1, W1>w§

= (us W)W; ) + (Vs W)WS )

Theorem 2.2 The space WS,(‘ [a, b] 1s a Hilbert space.

Proof: Suppose that the sequence {u,(x)}> | is a Cauchy column in Wic[a, b], so,

uy,(x), x<c
u,(x) = 04(0) n=12,---
up(x), x=>c
where {ug,(x)} >, and {u; ,(x)}’", are Cauchy columns in Wg and Wg, respectively.
So, there are two funcitions gyo(x) € W2, g,(x) € W?, make

o) = 8Oy = 0, iy o) = g1 (W), — O
a b

www.videleaf.com



Simplified Reproducing Kernel Space Theory and Its Applications

Let
go(x), x<c
g(x) =
g1(x), x>c¢

By the definition 2.2/, g(x) € W3 [a, b], and

a6 = CONMRy s = Nt (6) = 0O + it o) = 1 (V)R — 0

So, the space Wg’c[a, b] is a Hilbert space. O

Theorem 2.3 The space Wic[a,b] is a reproducing kernel space with the reproducing
kernel function
R)(x), (x,1) € [a,c)X]a,c)
R(x) =3 R (x), (x,1) € [c,b] x]c,b] (2-2)
0, others
Proof: Consider arbitrary u(x) € W5 [a,b].

If t € [a, ¢), then
(), Rz = Cuo(x), RI(x))ya + (ur(x), 0)ya
= u(1)
If t € [c, b], then
(), Rz = (uo(x), Oz + Cur (), R} ())wa
= u (1)
In conclusions, for every u(x) € Wi({,[a, b], it follows that
(), Ry = u(t)
So, the space Wic[a, b] 1s a reproducing kernel space with the reproducing kernel function
in Eq. (2-2) . O
Similarly, reproducing kernel space Wzl,c [a, b] 1s defined as

W, [a,b] = {u(x)lug(x) € Wy, ui(x) € W,}

And W, _has the following reproducing kernel function

r(x), (x,1)€la,c)xa,c)
ri(x) = r_} (%), (x,0) €[c,b] X|[c,b]
0, others
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In summary, the constructed space W23 a, b],Wzl,c[a, b] retains the advantages of in-
ner product calculation satisfying regeneration, while also possessing the property of
sharded smoothness. This book refers to this type of reproducing kernel space with shard-

ed smoothness as a discontinuous reproducing kernel space.

2.3 Summary

This chapter presents the definition and related properties of the general reproducing
kernel space W3'[a, b], and the general definition, inner product, and norm expression of
the space are given, and the general expression of the piecewise polynomial reproducing
kernel function R(x, y) is also given. In addition, a discontinuous reproducing kernel space
has been defined, and the relevant conclusions provide theoretical support for subsequent

chapters.
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Chapter 3 The reproducing kernel method for impulsive

differential equations

Due to the piecewise smooth nature of its true solutions, traditional numerical meth-
ods are difficult to directly apply to solving impulsive differential equations. The sim-
plified reproducing kernel method has many advantages, such as the ability to obtain
high-precision analytical solutions and easy algorithm implementation. To achieve the
reproducing kernel method for pulse problems, it is urgent to solve the key problem: how
to construct a Hilbert space with piecewise smooth characteristics. This chapter is based
on a simplified reproducing kernel space and solves impulsive differential equations (IDEs
for short). By constructing a discontinuous reproducing kernel space with piecewise s-
moothness and introducing operator equations, a new numerical method is proposed. The
reproducing kernel method, which originally could only solve smooth problems, was clev-
erly applied to solve pulse problems, and an algorithm for solving second-order impulsive

differential equations was designed.

3.1 Second-order impulsive differential equation

Pulse boundary value problems occur in many applications: population dynamics!%®,

271 irregular geometries and interface problems!®™3  signal

physics, chemistry
processing®!l. The research on the impulsive differential equations with all kinds of
boundary value 1s much more active in recent years. However, only in the last few
decades has the attention been paid to the theory and numerical analysis of IDEs. All
kinds of methods have been widely used to study the existence of solutions for impul-

sive problemst<4

. Many researchers have extensively studied the numerical methods
of impulsive differential equations. M.I. Berenguer®?! provide a collage-type theorem for
impulsive differential equations with inverse boundary conditions. Epshteyn®®“4 solved
the high-order differential equations with interface conditions based on Difference Poten-
tials approach for the variable coefficient. Hossainzadeh!*®! applied the Adomian Decom-
position Method(ADM) for solving first-order impulsive differential equations. Zhang!*”!

researched numerical solutions to the first-order impulsive differential equations by collo-
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cation methods. Zhang™"! analyzed a class of linear impulsive delay differential equation
by asymptotic stability.

In this chapter, we consider the following second-order impulsive differential equa-
tions:

u”(x) + a (u'(x) + ag(Du(x) = f(x), x€(a,b)\{c}

u(a) = ay, u(b) = a; (3-D)

Au'(¢) = az, Au(c) = ay
where Au'(¢c) = u'(¢™) —u’(¢”), a3 and a4 are not at the same time as 0. a;(x) and f(x) are
known function, «; € R, j = 1,2, 3,4. In this chapter, only one pulse point is considered,
by that analogy, the algorithm can also be applied to multiple pulse points.

As known to all, the reproducing kernel method is a powerful tool to solve differ-
ential equations®!. However, the reproducing kernel space is smooth, in order to solve
the impulsive differential equation, for the first time, we propose a broken reproducing
kernel space. This chapter cleverly deals with the traditional reproducing kernel space,
connecting two spaces with pulse points as the boundary. Each space is a smooth repro-
ducing kernel space, achieving the advantage of solving pulse differential equations and
utilizing the relevant theoretical properties of the original reproducing kernel space. In
this chapter, it i1s assumed that the solution to the Eq. exists uniquely and only one
pulse point is considered, while the case of multiple pulse points can be treated similarly.

The aim of this chapter is to derive the numerical solutions of Eq. (3-T)) in section
1. In section 2, we introduce the reproducing kernel space for solving problems. The nu-
merical algorithm and convergence order of approximate solution is presented in section
3. In the section 4, the presented algorithms are applied to some numerical experiments.

Then we end with some conclusions in section 5.

3.2 Discontinuous reproducing kernel method

Referring to the relevant theory of the reproducing kernel space in the middle of

Chapter 2, assuming the space Wgrc[a, b], Wzl,c[a, b] and its inner product are defined by

definition(2.2. In order to solve Eq. (3-1) , we introduce a linear operator L : WS’C la,b] —

W, la,b], where

Lu=u"(x)+a(x)u'(x)+ay(x)u(x), uce Wg,a[a, b]

By Ref.[7], it’s easy to prove that L is a bounded operator.
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Then Eq. (3-1) can be transformed into the following form
Lu=f(x), xe(ahb))\lc} (3-2)
where,u satisfies the following boundary conditions

{u(a) =ay, u(b) = ar

Au'(c) = a3, Au(c) = ay

We make {x;}:°, is a dense point set that removed the point ¢ on the interval [a, b],

put
613 = Ru(®),  62() = Ry()
OR, OR, .
B3(x) = ;%J—ﬁghw $1(0) = Ri(c™) = Ri(c)
and

pi(x) = Lry(x), i=12,-- (3-3)
where L* is the adjoint operator of L.
Let S, = span{{y: ()}, U{gbj(x)}‘j:l}. Then we can obtain that S, C W;I[a, b]. The
orthogonal projection operator are denoted by P, : Wic la,b] — §,.
Theorem 3.1 y;(x) = LR.(x;)), i=1,2,---.
Proof: By Eq. (3-3) of i, and the reproducibility of kernel functions, we have

'Jli(x) = (_E*in,R'x)W;f_ = (rx,'s LRX)WZI‘C.
= LRx(xi)a l = ]’2" o

Theorem 3.2 {y;i(x0)}L, U{gbj()c)}?:l is linearly independent in Wic[a,b].

4
Proof: Let (O = Z () + Z ki¢(t). The following proof shows that coefficients
i=1 =1

Ainkj,i=1,2,---,n,j=1,2,3,4 are all 0. Consider i(r) € W5 [a, b], and it satisfies
Lh=0, te(a,b)\c}
h(a) = 0, h(b) =0,
AW(c) = 1, Ah(c) = 0

then
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0= (h(t), " An(n) + Y k(1)
i=1 j=1

= Z Aih(t), L1, (1)) + ki{h(1), Ry(2)) + ko{h(1), Rp(2))
i=1
OR (1) OR (1)
+k3(h(1), Wh—:ﬁ T T ax

= Z i Lh(x;) + kih(a) + kah(b) + k3(h'(¢*) = W' (¢7)) + ka(R(c™) = h(c™))
i=1

= ks

|x:c‘> + k4<h(f),RC+(l‘) - RC‘ (t»

Similarly, we have k; = 0,k; = 0,ky = 0.

=Os I=Xp,X2," " s Xj—1s Xjgls " s Xp

Consider f;(1){ , and v;(t) € W} [a,b] satis-
# 0, others ’
fies
Lv; = fi(), te(a,b)\{c} (3-4)
vila) = 0,v;(b) =0,
The unique solution to the above equations exist(see ref.[7]), then
0= (1), ) A0y = > Av;(0), L'r (1)
i=1 i=1
= > ALvi(x) = D Aifi(x)
=1 i=1
= A;fi(x))
So,4;=0,j=1,2,--+ ,n. O

Theorem 3.3 If u € W; [a,b] is the solution of Eq. (3-2) , then u, = P,u satisfies the

following equations

{(v,w» = f). i=1.2 as)

v, 1) = a1,{v, 1) = @2, (v, 3) = @3, (v, Ps) = 4
Proof: Supposing u(x) is a solution of Eq. (3-2) , then

Pt s = WP = Wthidys = (0 L)y
= <.£H, rx;)W:f,(_ = -Eu(xf) = f(xi)

and

Patt, d1)ws = U Pudp)ws = s Pr)ys =, Ry = ula) = a
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Similaﬂy, we have (pnu, ¢2) = 3, <pnu*a gb?) = 3, (Pnua ¢4> = ay.
So, P,u is the solution of Eq. (3-5)) . O

In fact, u,(x) is an approximate solution of the exact solution. Through the knowl-

edge theory in this section, the true solution of Eq. (3-2)) can be expressed as
u(x) = Z Aipri(x) + ki1d1(x) + koo (x) + k33 (x) + kapa(x) (3-6)
i=1

Based on the previous knowledge analysis, it 1s known that the solution u, 1s the
approximate solution of Eq. (3-1) . Considering u, € S, truncate Eq. (3-6) to obtain an

approximate solution

p(X) = Z Aihi(x) + ki1 (x) + kaha(x) + ka3 (x) + kaha(x) (3-7)
i=1

To obtain the approximate solution u,, we only need to obtain the coefficients of
each y;(x)(i = 1,2,--+ ,n) and ¢;(x)(j = 1,2,3,4). Use ¢(x) and ¢;(x) to do the inner
products with both sides of Eq. (3-7)) , we have

n 4
D AW+ D kb)) = fx), i=1,2,,n
J=1 j=1 (3-8)

n 4
D AW+ D ki) =i i=1,2,3,4
j=1 j=1

This is the system of linear equations of 4;,k;,i =1,2,---,n, j=1,2,3,4.
Let

Wis i) - Win @)
Gn.+4 =

Wi @) =~ {Djs D) ik=1

=12, 0, jm=1234

F = (f(-x])a f(.XZ), ot af(-xn)9 |, an, a3, a/fl)T
Consider that {y;(x)}", [J{¢ j()c)}‘j‘.:1 is linearly independent in W3 [a,b], so, G is
exist. Then, we have

(/117/12a e 7/]'n7k]7k25 k37k4)T = G_] F

n+4

3.3 Convergence order and stability analysis

Theorem 3.4 Ifu € Ws’_c [a, b] is the solution of Eq. (3-2) , then u, uniformly converges to

.

20
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Proof: 1t can be inferred from the properties related to reproducing kernel

OR,
lu — u,| = Ku — uy, E)l
f
<Nty Nl =ty < Ml =t llys = 0

Theorem 3.5 u, converges to u, and has second-order convergence.

Proof: By definition[2.2],we have
up(x), x<c
u(x) = 0(x)
u(x), x>c
where, uy(x) € W3, u;(x) € W3 then
) = Oy = Neto () = w0, (O + lltr () = w1 n (O = O
So,

a0 () = o a0y = 0, Ml (x) = wrn(OI2 = 0

Note that,W, and W are both reproducing kernel spaces,and according to ref.[13], it can
be inferred that, uy, and u,, converge to u, and u; respectively, and have second-order

convergence. So,
() = (D) < MPflu(x) = (OIS,
= M (luo(x) = o (I, + Nl (0) = w1 1 (I
< M*((Moh*)* + (M h*)*) = M3h*
So,
1(x) = w,(x)| < Mo’

where,h is the step size, M, My, M, M, are constants. a

Similarly, it can be proven that if x € [a,c) or x € (c, D], i) uniformly converges to
u, i=1,2.
Furthermore, the calculation formula for the convergence order can be given as fol-

lows
max |u(x) — u,(x)|

CR=1
%2 hax [u(x) — ttn(1)]

Theorem 3.6 Setu € WS,C 1s the true solution of Eq. (3-2) , if there is a slight perturbation
¢ in the right-hand term f of Eq. (3-2) , denoted as _}7= [+ 6. And u satisfies Lu = E
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then
| —ul < M|o]
where, M 1s constant.
Proof:  According to the uniqueness of the solution of Eq. (3-2) and the property of
reproducing kernel space, it can be known that £ is a bounded linear operator from Wic
to Wzlgc and is a one-to-one mapping. Therefore, £~ exists and is bounded, so
=l = L7 f = L = L7 = LN+ 0)
=1L < 1L 18] < M|

So.for Ye > 0,36 = ﬁ,we have |u — u| < €. From this, it can be seen that the numerical
algorithm designed in this chapter is not sensitive to errors within a certain range. Even
when there are weak disturbances in the calculation process, the approximate and exact

solutions can still maintain a good degree of approximation. O

From the relevant theories in this section, it can be seen that the numerical algorithm
designed based on the discontinuous reproducing kernel space framework has the ability
to solve pulse problems. In addition, combining with the definition of discontinuous
reproducing kernel space, it can be seen that the algorithm does not require high regularity
of the solution to the function, and does not need to consider the continuity constraints in

general reproducing kernel methods to operate on the function.

3.4 Numerical examples

In this section, the method proposed in this chapter i1s applied to some impulsive

differential equations to evalute the approximate solution. Example [3.1], both example

3.2{and example |3.3|are calculated using the regenerated kernel space Wi(, [0, 1], and n 1s

the number of dense point on the interval [0, 1]. We compare the numerical results with
the other methods dicussed in ref.[35, 36]. Finally, the results show that our algorithm is
practial and remarkably effective.
Example 3.1 Consider the linear impulsive differential equation!*!

—u"(x)+u(x) =0, xe€(,1)\{1/4}

w(0) =0, u(l)=-1

Au(1/4) =0, Au'(1/4) =-2
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The exact solution of example [3.1]is
i (—1 —ei + e%) (62“" —~ 1)

2
— e’ —1
() e i (ezx — ¥ty — M el — 4 e%)

b
e’ — 1

: x€[0,5]

x€(y,1]

Table 3-1: Comparison of absolute errors in Example [3.1

our method
no () — (05
max |u —u,| CR max|u —u,| CR max|u" —u)|l
33 3.426E-3 7.988E-5 3.381E-4 7.988E-5
129 8.562E-4 5.297E-6 2.252E-5 5.297E-6
200 - 4.563E-6 1.896E-5 4.563E-6
400 - 4486E-7 3.3464 1.934E-6 3.2933 4.486E-7

Table [3-1] presents the numerical calculation results and compares them with the
error results in ref.[[35]]. The numerical results are consistent with the relevant theories of
theorem [3.4]. The results indicate that the method proposed in this chapter can obtain
more accurate approximate solutions. From the illustrative tables, we conclude that when
truncation limit » is increased we can obtain a good accuracy.

Example 3.2 Consider the following equation with two pulse points!!
-u’'(x)=0, xe€(0,1)\({1/3,4/5}
w0)=0, u(l)=0

Au(1/3) =0, Au'(1/3) = -

Au(4/5) =0, Au'(4/5) =1

The exact solution of example [3.2]is

Lo xel0.4]
w={i-% red.d)
L -redn

In Fig. |3;1'| , the red dotted line 1s the numerical solution and the black line 1s the
exact solution, Fig. [3-2] shows the variation of absolute error between the approximate
solution and the true solution when n = 33. Table[3-2]shows the comparison results of our
algorithm with other methods. All figures and tables indicate that our proposed method is
effective, it indicates that our presented method is in good agreement with other methods.

It’s worth noting that the approximate solutions of Example and Example are
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Table 3-2: Comparison of absolute errors in Example |3.2

our method

max |u(x) —u,(x)) C.R max |[u'(x) —u, (x)] CR

nou(x) = u ()=

33 4.627E-2 3.299E-6 1.197E-5
129 1.578E-5 2.028E-7 8.090E-7
400 - 2.048E-8 8.238E-8
800 — 5.022E-9 2.0271 2.028E-8 2.0222
‘! N
,/ N\
10+ /
[ i \\
i S N\
ui: /’ “\\
// . N
[ 02 0.4 (TN 08 //{o
\\ Vs
0 \\ ’/
\\ ’/
N

Fig. 3-1: The exact solution and the approximate solution in Example [3-2

1.5%1078
1.x10~¢

5.x10

= L .
T
0.2 04 0.6 0.8 1.0

V.a

Fig. 3-2: The absolute errors of |u(x) — u,(x)| in Example (3-2
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only proved norm of convergence to the exact solutions(see ref.[35]), but the approximate
solutions of this chapter are proved uniformly converges to u(x).

Example 3.3 Consider the following impulsive equation with variable coefficients!®!

1, 0<x<0.5

(Bu,), = 56x° x € (0,1)\ {0.5}, where B =
2, 05<x<1

subject to the following boundary and interface conditions

wO0)=0, u(l)=21

2
Au(0.5) =0, Au’'(0.5) = -0.5u4(0.57)
The exact solution of example [3.3]is
x €[0,0.5]

x5,
u(x) =
L+ 5%). x € (05.1]

Table 3-3: Comparison of absolute errors in Example |3.3

our method

max |u(x) — u,(x)] C.R max |u'(x) —u,(x)) CR

no lu(x) = (0P

20 1.975E-2 3.221E-3 - 2.849E-2 -

40 6.241E-3 7.207E-4 2.1600 6.832E-3 2.0602
80 1.743E-3 1.702E-4 2.0822 1.669E-3 2.0333
160 4.600E-4 4.132E-5 2.0423 4.123E-4 2.0172
320 1.181E-4 1.017E-5 2.0255 1.024E-4 2.0095
640 2.992E-5 2.524E-6 2.0105 2.553E-5 2.0040

Table 3-4: The absolute errors of added the disturbance in Example (3.3

n max |u(x) — u, (x)]| max |u'(x) — u, (x)|
20 3.228E-3 2.852E-2

40 7.273E-4 6.863E-3

80 1.765E-4 1.700E-3
160 4.766E-5 4.436E-4
320 1.701E-5 1.337E-4
640 1.077E-5 5.678E-5

Table [3-3] lists the absolute error and convergence order of example [3.3]. The da-

ta in the table indicates that when truncating nnincreases, higher accuracy approximate
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solutions can be obtained, indicating that the proposed method is very stable and effec-

tive. This method can not only solve the Eq. (3-1)) of pulse differential equations, but

also be extended to solve high-order pulse differential equations and complex boundary

value problems of pulses. Table shows the result of adding the disturbance 10~* on

the right-hand side f(x), it indicates that disturbance is hardly affect the results of our

method. It shows that the proposed approach is very stable and effective.

Example 3.4 Consider the three-order linear impulsive differential equation

u” (x) + ax(u”(x) + ap(u(x) = f(x),  x € (=2,2)\ {0}

W(-2)= 16, u2) =2, [ u(vdx =12

Au(0) =0, Au'(0)=1, Au”"(0)=2

I-x, x<0 -2cos(x), x<0
where,ay(x) = a(x) =

e, x>0 -2, x>0
x(—x*+ 2% = 24xcos(x) +24),  x<0
e‘*(—% +x2+x)+2(x—2)— I, x>0

The exact solution of example[3.4]is

fx) =

x4, x<0
M(.X)Z v 2
- X +x, x>0

Table 3-5: Comparison of absolute errors in Example (3.4

e

n  max|u—u,] CR max|u —u)| max | — u); max |u"” —u)’|
320 1.8367E-5 - 7.0934E-5 1.9598E-4 3.9198E-4
640 4.6155E-6 2 1.7919E-5 4.9411E-5 9.8826E-5

{1 'l | | e 1 i L
i -1 1 2

Fig. 3-3: The approximate solution «, and the exact solution « in Example (3.4
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Fig. 3-4: The approximate solution u/, and the exact solution #" in Example |3.4
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Fig. 3-5: The approximate solution « and the exact solution «” in Example (3.4

30}

—40}F

1

Fig. 3-6: The approximate solution u,” and the exact solution «”” in Example |3.4
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In examplerazq, the coefficients ay(x), a»(x) also have the characteristic of piecewise

smoothness, 7 is the number of dense point on the interval [-2, 2], the reproducing space

is Wg’(:[—z, 2]. Fig.|3-3|show the approximation between approximate solutions and true
solutions, table[3-5]and Fig.[3-4], Fig.[3-5], and Fig.3-6|respectively show the approxima-

tion between the derivatives of approximate solutions and true solutions, and the variation

law conforms to the theorem [3.4]. Among them, the red dashed line represents approxi-
mate solution ! (x), and the black curve represents true solution «”’(x), i = 0, 1,2, 3. The
results shows that the present method is also eftective for high-order impulsive differential

equations and complex boundary value problems of pulse.

3.5 Conclusion

This chapter applies the simplified reproducing kernel method to the solution of
pulse differential equations, cleverly establishing a discontinuous reproducing kernel s-
pace with piecewise smooth properties, and transforming the differential equation to be
solved into an equivalent operator equation in this space to design an algorithm for solv-
ing. We have designed numerical algorithms for solving second-order pulse differential
equations, delayed pulse differential equations, and piecewise constant pulse differential
equations, with a focus on describing the construction process of the discontinuous regen-
eration accounting method. We have comprehensively utilized linear multi-step method
and optimization method to design algorithms, and each algorithm has proven relevant
theories such as convergence and convergence order. From all the tables and graphs of
the examples, it can be seen that, The algorithm designed in this chapter is very accurate
and effective.

In fact, this intermittent regeneration kernel idea can be extended to other types
of pulse boundary value problems. The proposal of the intermittent regeneration kernel
idea is a significant supplement to the traditional regeneration kernel idea, allowing the
regeneration kernel method to be applied to solve the problem of shard smoothness. It not
only retains the original advantages of the regeneration kernel method, but also expands

the application scope of the regeneration kernel theory.
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Chapter 4 The reproducing kernel method for nonlinear

impulsive differential equations

In this chapter, a new algorithm is presented to solve the nonlinear impulsive differ-
ential equations. In the first time, this chapter combines the reproducing kernel method
with the least squares method to solve the second-order nonlinear impulsive differential e-
quations. Then the uniform convergence of the numerical solution is proved, and the time
consuming Schmidt orthogonalization process is avoided. The algorithm is employed

successfully on some numerical examples.

4.1 Second-order nonlinear impulsive differential equation

In recent years, the impulsive differential equation model has been applied to many
aspects of life: population dynamics?®| physics, chemistry!??)| irregular geometries and
interface problems!=®l| signal processing!**!. Many scholars have studied the existence
and numerical solution of the impulsive differential equations®**=#, Epshteyn!*® =/l solved
the high-order linear differential equations with interface conditions based on Differ-
ence Potentials approach for the variable coefficient. However, so far, no scholars have
discussed the numerical solution of the second-order nonlinear impulsive differential e-
quations. Only a few scholars have studied the existence of solutions®“!, Sadollaha!
suggested a least square algorithm to solve a wide variety of linear and nonlinear ordi-

241 presented the reproducing kernel method and least

nary differential equations. Zhang
square to nonlinear boundary value problems. These research work shows that the least
square method plays a very good role in solving nonlinear problems. As known to all,
the reproducing kernel method is a powerful tool to solve differential equations!”#142H3,
Al-Smadi® introduced a iterative reproducing kernel method and other methods for pro-
viding numerical approximate solutions of time-fractional boundary value problem.

In this chapter, we consider the following second-order nonlinear impulsive differ-
ential equations(NIDEs for short):

' (x) + a (' (x) + ap(u(x) + N(u) = f(x),  x€la,b]\ {c}

ula) = a,u(b) = ar, Au'(c) = az, Au(c) = ay

(4-1)
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where Au'(c¢) = u'(c¢*) — u'(c¢7), a3 and a4 are not at the same time as 0. a;(x) and f(x)
are known function, N': R — R is a continuous function, a; € R, j = 1,2,3,4. In this
chapter, only one pulse point is considered, by that analogy, the algorithm can also be
applied to multiple pulse points.

The aim of this chapter is to derive the numerical solutions of Eq. (#-I) in section
1. In section 2, we introduce the reproducing kernel space for solving problems. The
reproducing kernel method and the least squares method are presented in section 3. In the
section 4, the presented algorithms are applied to some numerical experiments. Then we

end with some conclusions in section 5.

4.2 The broken reproducing kernel space

In this chapter, the traditional reproducing kernel space 1s dealt with delicately, the
space has been broken into two spaces that each one is smooth reproducing kernel space,
so we can use this space to solve NIDEs. We assume that the Eq. (#-I)) has a unique

solution.

4.2.1 The traditional reproducing kernel space

e Reproducing kerenl space Wg la, c] 1s defined as

W3la, c] = {u(x)|lu” is an absolutely continuous real value function, u”’ € L?[a, c]}**/(W}
for short). The inner product and norm are given by ref.[7].

e Reproducing kerenl space W, [a, c] is defined as

W, la, c] = {u(x)|u is an absolutely continuous real value function, u’ € L*[a, c]}*(W,
for short). The inner product and norm are given by ref.[/].

The reproducing kernel spaces are W2 and W! with reproducing kernel R(x) and
r9(x), respectively.

In the same way, the reproducing kernel spaces are Wg[c, b](WS for short) and

W,[c,bl(W, for short) with reproducing kernel R/ (x) and r/(x), respectively.

4.2.2 The reproducing kernel space with piecewise smooth

In this chapter, consider that the exact solution of Eq. (@-1)) is not a smooth function,

so, we connected two reproducing kernel spaces on both sides of the impulsive point, we
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call it the broken reproducing kernel space. We have proposed this method for the first
time.
Definition 4.1 The linear space W, _is defined as
W; la.b] = {u(x)]if x < c then u(x) € W,, if x > c then u(x) € W}}}. Each u(x) €

W3 [a, b] has the following form

up(x), x<c
u(x) =
u (x), xzc
where up(x) € Wg, u(x) € Wg.

Theorem 4.1 Assuming that the inner product and norm in Wic [a, b] are given by

vy = (o, vodws + i, vidys,  wveW; [a,b] (4-2)

[ 3
”M”WS‘F = <b£, M)Wi‘_a uc Wz!c[aa b]

then the space W;’,C[a, b] is a inner space.
Proof: Forany u,v € Wg,c[a, bl,
(U + v, whys = (o + vo, Wodwz + (U1 + Vi, Wiy
= (uo, wodws + Vo, wodws + (U, wiws + (vi, widys
= (U Wiy + AV Wy
We can prove that the Eq. (#-2) satisfies the other requirements of the inner product

space. O

Theorem 4.2 The space WS_C [a, b] 1s a Hilbert space.

Proof: Suppose that {u,(x)}, is a Cauchy sequence in Wic [a, b], however,

o (Xx), x<c
U,(x) = 0() n=12,---
Upa(x), x=>c¢
where {ug,,(x)}>, and {u; ,(x)}>*, are Cauchy sequences in W, and W}, respectively.

n=1 n=1

So, there are two functions go(x) € W,, g;(x) € W, and

||eeg,(x) — go(x)llﬁ,g =0, lupa(x) - 31(X)|vaf — 0.
Let
go(x), x<c
glx) =
gi(x), x>c

By the definition 4.1, g(x) € Wg,c[a, b], and

liea(x) = @O = lutou(3) = 0Oy + et n(6) = g1 ()G, = 0.
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So, the space WS .la, b] is a Hilbert space. O

Theorem 4.3 The space W%(_[a, b] is a reproducing kernel space with the reproducing
kernel function
R)(x), (x,1)€la,c)xla,c)
R(x)={R/(x), (x,0) € [c,b] X[c,b] (4-3)
0, others.
Proof: Consider arbitrary u(x) € Wic[a, b].
If 1 € [a, 0), (u(x), R(X)hys = (), RAK))ys + (11 (x), 0}y = ao(0)
If 1 € [c,b], (u(x), Ri(xX))yz = Cuo(x), Oy + i (x), R}(x)>wg = u (1)
In conclusions, for every u(x) € Wic [a, b], it follows that

(u(x), R,(x)) = u(z). O

Similarly, the reproducing kernel space Wzl.c la, b] is defined as
W, la, b] = {u(x)| if x(c then u(x) € W}, if x > ¢ then u(x) € W, }, (4-4)
and it has the reproducing kernel function
r?(x), (x,1) € [a,c) X |a,c)
r(x) =4 rl(x), (x.1) € [c.b] X |[c,b] (4-5)

0, others.

In order to solve Eq. (4-1) , we introduce a linear operator £ : Wic_[a,b] —
W) la,bl,

Lu=u"(x)+a(x)u'(x)+ay(xu(x), wue Wic[a, b]

Theorem 4.4 £ is a bounded operator.

Proof: For each fixed u(x) € Wi(_[a, b], by difinition4.1|, u(x) has the following form

u(x) = {uo(x), x<c

u(x), x=>c
where uy(x) € Wj, u(x) € WS.

Moreover,
2 _ 2 2
1Luly, = 1Luolly, + 1Ll
and

|I£uollﬁvj = (ug (x) + ay ()ug(x) + ap(X)u(x), ug (x) + ay(x)ug(x) + ap(X)u(x))y
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= [ug(a) + ar(a)uj(a) + ag(a)u(a)]* + f | [(ugy (x) + ay(X)up(x) + ag(x)u(x)) 1Pdx

'
<M, + f (> + Mol |* + Msup|* + Myluol* + Ms|ug||up| + Meluolluf)|
a

e e

+Maluglluy’| + Mslugllug| + Molugllug’| + Miolug llug”dx

where M;(1 < i < 10) are constants.

Tée (" i
f || |dx < \/ f lu2dx f lu)2dx
4] a [¥)

C
2 )
ol = wo. wodw; = uo(@) + ug(a) + ug(a) + f lug” "
a

Furthermore,

and

So
iy, 2 ..
f oty Il lx < Cijlluollysr  j=0,1,2,3
a

Therefore
| Luoll?, < Mlluoll?
W(! W(I
Where, M and C;;(z, j = 0, 1, 2, 3) are constants.
Similarly, || L], < Ml |2,
b b
as a result
2 2 2 2
|I£u||W2|.E_ = 1 Luolly, + ||£u1||Wf! < MIIMIIW;J.

In other words, £ is a bounded opertor. O

Then Eq. can be transformed into the following form:
Lu = f(x) = Nu(x)), x¢€la,b]\{c}

(4-6)
u(a) = ay, u(b) = ar, Au'(c) = as, Au(c) = ay.
We make {x;}77, is a dense point set that removed the point ¢ on the interval [a, b] ,

put

OR(1) IR

$1(x) = Ra(x), §2(x) = Rp(x), p3(x) = ———|i=c+

ot ot |t=c‘s ¢4(X) = Rx(c+) - Rx(c_)

and
Yi(x)=L'r.(x). i=1,2,---

where £* is the adjoint operator of L.
Let S, = span{{y ()} U{qu(x)}j:1 }. Then we can obtain that S, C Wic[a, b].
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The orthogonal projection operator is denoted by P, : Wic [a,b] — S, letu, = P,u.
Theorem 4.5 ¢;(x) = LR.(x;)). i=1,2,---
Proof: (x) = (L7 Ry = <’”’xfa£Rx)W21, = LR (x;).i=1,2,---. O

Theorem 4.6 For each fixed n, {g[f-(x)}” U{:(0)}, is linearly independent in W [a, b].

Proof: Let0 = Z Aai(t) + Z ki (1),

Jj=1
h=0, te€lab]\{c
e Consider h(r) € W2 [a, b], L La. T\ {e) . then
’ h(a) = 0, h(b) = 0, Al () = 1, Ah(c) = 0

1 4
= (D, Y Aty + ) ki (D)
i=1 j=1

= Z Ah(), L7 (0) + kih(1), Ra(D) + ka(h(), Re(D)
i=1

OR, OR,
+ ky(h(1), f)u - (r)|w> ¥ ka(h(1), R (1) — Ri-(1))

= Z A Lh(x;) + kih(a) + koh(b) + k(W' (¢™) — B'(¢7)) + ky(h(c™) — h(cT)) = k;.
i=1

Similarly, we have k1 =0,kh =0,ky = 0.

F=X1, X2, Xj, Xjyp, 5 X

e Consider fj(r){i "L fi(0) € WL [a,bl,

0, others

Lv; = fi(), t€la,b]\{c}

take v;(1) € W3 [a,b], ‘ . The unique solution to the above
' vi(a) = 0,vi(b) =0

equations ex1st(see ref. [7]) then

<vJ,Zw,> = ZA Vi, L) = Zuvj(x,) = Z/lff(x, = 4f(x).
So, 4; O j=12,---,n O

4.3 Primary result

In this section, based on the least square method, the approximate solution of Eq.

4-6)) is presented in the broken reproducing kernel space W;”C [a, b]. And the convergence

of the approximate solution is proved.

Theorem 4.7 Ifu € Wic[a, b] is the solution of Eq. (4-6) , then u,, satisfies the following:

<V’¢/i>:f(xi)_N(u(xi))e i:l,2,---,n
<V, ¢1> = ay, <V, ¢2> = s, (V, ¢’3> = @3, <V, ¢4> = 4.

(4-7)
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Proof: Assume u is a solution of Eq. (]E) , then
(s Yidwy = Pt hidws = . Prtfidwy = s idws
= Ly = (Litr = Lulx) = f0) = N(w(x).
and
w”"’[”')Wic = (pnbt,gbl)vv;‘c_ = (u, pnﬁbl)WS’i_ = (u, pr)w3.
= <”’R">W§.p = u(a) = aj.

Slmllarlya we have <u?za ¢2> =, (una ¢)3> = s, <Mm ¢4) = ay. o

In fact, u, converges uniformly to u in Wg(_.

Theorem 4.8 If u € WS’,C[a, b] is the solution of Eq. (4-6) , then u,, uniformly converges to

u.
Proof:  [u(t) = (1) = Kut = 14y, R)| < Ry Nt = tyllys.

< M||lu — “n”wgc_ — 0. O

Similarly, we can prove that if ¢ € [a, c] and [c, b] respectively, then ) uniformly
converges to u”, i = 1,2.

Since N is continuous, and u, — u uniformly, we have
N(u(x)) = N(lim u,(x;)) = lim N (u,(x;)).
Therefore, while u is the solution of Eq.(6), u,, = #,u, we have

{(u,,, ui) = f0) = NCim u, (), i=1,2,-+,n 48

(um ¢l> = Qy, (um ¢2) = Qy, <um ¢3> = 3, <Mm ¢4) = Q4.

So, the approximate solution u, of Eq. (4-6)) is the solution of the following equation.

vy = f) = N () =&, i=1.2,00- . 49)
W, d1) = @, (v, $2) = a2, (v, $3) = @3, (v, P4) = .
where &; = N(u(x;)) — N(u,(x;)) = 0if n — oo,
Asu, €5, s0
(X) = Z Api(x) + ki1 (x) + koo (x) + ka3 (x) + Kagpa(x) (4-10)
i=1

To obtain the approximate solution u,, we only need to obtain the coefficients of
each y(x)(i = 1,2,--- ,n) and ¢;(x)(j = 1,2,3,4). Use y;(x) and ¢;(x) to do the inner
products with both sides of Eq. @-10) , we have
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n 4
Z Aj(’#fs wi) + Z kj(%”i: ¢j) = f(xf) -Nu,(x))—&, i=12--.,n
o % (4-11)

n 4
DAL+ ) ki) =ai, i=1,2,3,4
J=1 J=1
This is the system of linear equations of A;, k;,i = 1,2,--- ,n, j=1,2,3,4.
Let

('ﬂia "t[/k> e (‘bie ¢j>
Gn+4 =

Wis @) -~ {Djs ) Kl ime1 234
Nu,(x)+e=n, i=1,2,--- ,n.
F=(f(x) =, f(x2) =12, f(0) = s a1, 2, @3, 0) "
Consider that {y;(x)}"_, U{qﬁj(x)}f}:l is linearly independent in Wic[a, b], so, G~ is
exist. Then, we have

(A, Aoy ooy A ki ko ks k)T = G- F. (4-12)

SO, /11, /12, ey /ln, kl, kz, k3, k4 arc CXpI’GSSGd by m-nz, - My
Substituting Eq. (4-12) into Eq. (4-10)) yields

n 4
1,(X) = > A W) + Y KO, )G (x). (4-13)
i=1 i=1

In order to solve the approximate solution u, of Eq. (-0)) , it is necessary to make
N (u(x;)) and N(u,(x;)) close to the maximum, that is to say, each &; is as close as possible

to 0. Therefore, we construct the following optimization model to solve the value of

(nl'JT?Z'J e 9771'1)
min > (N, (x) = 7). (4-14)
i=1

For the above model, it is actually a common nonlinear optimization problem, and

there are many mature methods to solve the problem. In this chapter, the least square

method is used to solve the minimum point (7}, 79, - - , 7)) of Eq. (4-14) , and Mathemat-

ica software is used to implement the program, substituting (1,7, - - , 7)) into Eq. (4-13

yields the solution u, of Eq. (¢-10) , namely, u, is the approximate solution of Eq. (#-6) .
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4.4 Numerical examples

In this section, the method proposed in this chapter is applied to some impulsive
differential equations to evaluate the approximate solution, and the reproducing space
1S W;,C[O, 1]. Finally, the results show that our algorithm is practical and remarkably
effective.

Example 4.1 Consider the nonlinear impulsive differential equation

u”(x) + xu'(x) + u(x) + u(x)u'(x) = f(x), x€[0,1]\ {%}

u(0) =0, u(l) =2, Au(%) = %, Au’(%) = %
where
F) = x* (4x5 +5x% + 12) x€[0,3)
20 +6x7 +3x+2 x€e[3,1]
The exact solution
u(x) = o xelly)

X +xxe[31]

Table 4-1: Comparison of absolute errors in Example @.1{(n = 32)

X True solution  Approximate solution Absolute error

0 0 0 0

0.2 0.0016 0.0022004090268169  6.0041E-4
0.4 0.0256 0.0268323189078403  1.2323E-3
0.6 0.96 0.9611287501607335 1.1288E-3
0.8 1.44 1.4404744918697479  4.7449E-4
1 2 1.9999999999998206 1.7941E-13

Example 4.2 Consider the nonlinear impulsive differential equation

u”’(x) —u(x) + w?(x) = f(x), x€[0,1]\ {3}
u(©0) = 0, u(l) =255, Aul)y=0, Aw()=-1.

where
’;
Le=3v-3 (o2 _ 1) x €0, 1
e LY.
é(e — 12 xe [%, 1]
The exact solution
. - 1
e 2(ef—e M) xel0,5)
un =12 :
2

(e? —e e * xe[i,1]
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Table 4-2: Comparison of absolute errors in Example 4.2|(n =

32)

X

True solution

Approximate solution

Absolute error

0

0.2
0.4
0.6
0.8

0

0.12211645844515
0.24913387914768
0.28598316716894
0.23414321382385
0.19170024978210

2.88657980640254E-15
0.12216608333390094
0.24924050619878646
0.28609078503050855
0.23419550403227257
0.19170024978210173

2.8866E-15
4.9625E-5
1.0663E-4
1.0762E-4
5.2290E-5
2.T755E-17

0.4 6 [X]

10

Fig. 4-1: The approximate solution u, and the exact solution « in Example ¥4.2|(n = 32)

0.6

i

Fig. 4-2: The approximate solution u;, and the exact solution u" in Example 4.2|(n = 32)
In Fig. @-Tand Fig.[d-2], the red dotted line is the numerical solution and the black

line is the exact solution, it indicates that our presented method is very stable and effective.

It 1s worth explaining that the method proposed In this chapter can not only be used to

solve the nonlinear pulse problem, but also can be used to solve the linear problems.

Example 4.3 Consider the following impulsive differential equation with variable

coeflicients!=%!

B’ (x) = 56x°,x € [0, 11\ {0.5}, where B=

1if 0<x<05

2if 0.5<x<

I.
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subject to the boundary and interface conditions:

w(0) =0, u(l) = iﬂ Au(0.5) = 0, Au'(0.5) = —0.51'(0.5).

12°
The exact solution
8 x €10,0.5]

%(xg + glb) x € (0.5,1]

=

u(x) =

Table 4-3: Comparison of absolute errors in Example (4.3

Presented method

nofu(x) —u, ()] [36]
max |u(x) — u,(x)]  max |u'(x) — u, (x)|

20 1.975E-2 3.221E-3 2.849E-2
40 6.241E-3 7.207E-4 6.832E-3
80 1.743E-3 1.702E-4 1.669E-3
160 4.600E-4 4.132E-5 4.123E-4
320 1.181E-4 1.017E-5 1.024E-4
640 2.992E-5 2.524E-6 2.553E-5

4.5 Conclusion

In this chapter, combining the reproducing kernel method and the least square
method to solve nonlinear impulsive differential equation, this method is proposed for
the first time. A broken reproducing kernel space is cleverly built, the reproducing kernel
space is reasonably simple because the author did not consider the complicated boundary
conditions, and avoid the time consuming Schmidt orthogonalization process. The non-
linear operator is transformed into a nonlinear optimization model, and the least square
method is used to solve the problem. In fact, this technique can be extended to other class
of impulsive boundary value problems. Although we just considered one pulse point in
our presentation, by that analogy, the algorithm can also be applied to multiple pulse
points. From the illustrative tables and figures, we obtain that the algorithm is remarkably

accurate and effective as expected.
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Chapter 5 The reproducing kernel method for Fredholm

integro-differential equation

In this chapter, the simplified reproducing kernel method (SRKM for short) is pre-
sented to approximate the solution of second-order boundary value problems of Fredholm
integro-differential equation. The convergence analysis of the method and the condition
number of the matrix are also discussed. The proposed method is proved to be stable
and have second order convergence. The algorithm is employed successfully in some

numerical examples.

5.1 Fredholm integro-differential equation

In recent years, the integro-differential equations (IDEs for short) are an impor-
tant branch of modern mathematics that arises naturally in different ares of applied

48]

biological phenomena/, aeroelasticity phenomena™, population dynamics®!, neural

networks!

, and so on. The existence and uniqueness of the solutions for the higher-
order IDEs have been investigated by Agarwal®>!!; Unfortunately, it is difficult to obtain
analytical solutions for the mentioned equations. So a numerical method is required. It-
erative method®? and normalized Bernstein polynomial method®¥ are presented to solve
boundary value problems of second-order IDEs. Wavelet method®*>1, walsh function
method™®, Chebyshev finite difference method®?, differential transform method™8 and
Legendre polynomial method™? are also discussed for numerically solving IDEs. Multi-
scale Galerkin method”! and Finite Element method'!! are presented to approximate the
solutions of second-order boundary value problems of Fredholm IDEs.

In this chapter, SRKM is developed to obtain stable numerical solutions of second-

order boundary value problems of the Fredholm IDEs:

1
u’(s) + p(s)u'(s) + g(s)u(s) + /lf k(s, Hu(Hdt = f(s), se€[0,1], 5-1)
0 -
u0)=a, u(l)=4.
where A, @, 8 are real constants, p(s), g(s) are two known functions, f(s) € L*([0, 1]) and

k(s,t) € C([0, 1] x [0, I]) are given, and u(s) is an unknown function to be determined.

As known to all, the reproducing kernel method is a powerful tool to solve the initial
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boundary value problems, and the SRKM is easy to get the approximate solution with
higher precision. As to differential equations, the SRKM can reduce the condition number
of the resulting discrete systems largely. In this chapter, we have established SRKM to
solve the numerical solution of Eq. (5-T)) in reproducing kernel space.

The rest of the paper is organized as follows. In section 2, we introduce the repro-
ducing kernel space which will be used to discretize the IDEs. We present in section 3
the SRKM for solving second-order boundary value problems of Fredholm IDEs, and an-
alyze the convergence and stability. In the section 4, the presented algorithms are applied

to some numerical experiments. Then we end with some conclusions in section 3.

5.2 Preliminaries

Before the construction, it is necessary to present some notations, definitions, and
preliminary facts upon the reproducing kernel theory that will be used further in the re-
mainder of the paper. Throughout this chapter, L*[0, 1] = {u| L ’ w*(x)dx < oo} .

e Reproducing kernel space
Definition 5.1 The reproducing kernel space W, is defined as

WS [0, 1] = {u(x)|u” is an absolutely continuous real value function, u’” €

L?[0, 1], u(0) = 0, u(1) = 0}. The inner product is given by

1
(u(x), v(x)) = u(0)v(0) + u' (0O (0) + u” (0" (0) + f u''Vv'dx, u,ve W;f [0, 1].
0

Its reproducing kernel is R,(y), and the norm in WS is given by ||u|| =  [{u, M>w§ .
Similarly, The reproducing kernel space W, is defined as
Wzl [0,1] = {u(x)|u is an absolutely continuous real value function, u’ € L[0, 1]}.

The inner product is given by

1
(u(x), v(x)) = u(0)v(0) + f W'vdx,  u,ve Wio,1].

0

Its reproducing kernel is r.(y), and the norm in W2l is given by ||lu|| = m .
e The initial conditions of homogeneous ~
Considering the characteristics of Eq. with two initial conditions, for the con-
venience of describe our algorithm, put
v(s) = (1 = s)(uls) — @) + s(u(s) = ).
So, v(0) = 0,v(1) =0, and f(s) in Eq. can also be reduced to a known function.
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Therefore, Eq. (5-1)) can be equivalently reduced to seeking out a function u(r) satis-

fying the following equation:

I
u”’(s) + p(Hu'(s) + g(s)u(s) + ﬂj k(s, Du(t)dt = f(s), s €l0,1], (5-2)
0 -

u(0)=0, u(l)=0.
On the other hand, the reproducing kernel space W, contains two conditions for

u(0) = 0,u(1) = 0. So, we can solve Eq. (5-2) in W;.

5.3 Description of the SRKM

In this section, we will develop the SRKM for solving Eq. (5-2) .
By Eq. (5-2) , we define a linear operator £ : W;[0, 1] — W,[0, 1]:

1
Lu =u"(s)+ p(Hu'(s) + g(s)u(s) + Af k(s,Hu(ndt, ue WS [0, 1]
0

It’s easy to prove that £ is bounded linear operator from W3 into W,.

So, Eq. (5-2)) can be transformed into the following form:
Lu=f(s), sel0,1]. (5-3)
Suppose {x;}2, is dense on the interval [0, 1], put ¥i(x) = L7 (x), i = 1,2,---,
where L is the adjoint operator of L.
Theorem 5.1 ¢(x) = LR (x;). i=1,2,---.
Proof:  ¢i(x) = (Lry,Rows = (ro, LRy = LR(x;). i =1,2,--- . O

From ref.[[/]], for each fixed n, it follows the function system {i/;(x)}"_, is linearly
independent on W3. Moreover, {;(x)}, is a complete system in the reproducing kernel
space W3[0, 1].

Let

Sn = Spa”{{%(x)}?zl }

Then we can obtain that §,, C WS [0, 1].
The orthogonal projection operator is denoted by %, : WS[O, 1] = 8, letu, = P,u.

Theorem 5.2 If u € W;;’ [0, 1] is the solution of Eq. (5-3)) , then u, satisfies the following:
W) =f(x) i=1,2,---,n. (5-4)
Proof: Assume u is the solution of Eq. , then
(Uns Yidws = (Pt Yidws =, Putbidws = (s i)y

42 www.videleaf.com



Simplified Reproducing Kernel Space Theory and Its Applications
=, L7 = (L = Lu(x) = f(x). 0

In fact, x, converges uniformly to x in Wj.
Theorem 5.3 If u € W3[0, 1] is the solution of Eq. (5-3)) , then u, uniformly converges to

u.
Proof: |, (x) — u()l = [Quy — u, R)| < [Rullws 1w = ullys

< Mllu, — ullyz = 0. 0

Similarly, we have the following conclusions.

Theorem 5.4 If u € WS[O, 1] 1s the solution of Eq. (5-3) , then u,(f) uniformly converges to
u?,i=1,2.

According to the above discussion, the solution u, of Eq. (5-3)) is the approximate

solution of Eq. (5-2) .
Asu, €85,, s0

1y (X) = " Ai(x) (5-5)
i=1

To obtain the approximate solution u,, we only need to obtain the coefficients of
each y;(x)(i = 1,2,--- ,n). Use ¢,(x) to do the inner products with both sides of Eq. (5-5))

, we have
DAy = f), i=1,2,-n (5-6)
=1
This is the system of linear equations of A;,i = 1,2,--- ,n.

Let

W) - W)
G, =

<‘;[/ns 'ﬂl) e (wm 'an>

nxn

F = (f(x1), f(xa), -+, f(x).
Consider that {1};(#)}\_, s linearly independent in WS[O, 1], so, G !is exist. Then, we

have
(A, Ay, )" =G F. (5-7)

Theorem 5.5 The approximate solution u, of Eq. (5-2)) converges to its exact solution u

with second order convergence.
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Proof: It is known from the previous analysis that the solution of Eq. (5-2) is also the
solution of Lu = f in W;[O, 1]. Note that WS[O, 1] is a reproducing kernel space, take
advantage of theorem 4 in ref.[13]], we have u, converges to u with second order conver-

gence. Therefore,
1,(x) = w()| < Mlluty(x) — u()llys < M(Mih*) = Moh®.

where h is step-size on the interval [0, 1], M, M|, M, are constants. a

Furthermore, the following rate of convergence formulas can be obtained:
|un(x) — u(x))

() — u(x)|”

In addition to the convergence order analysis of the algorithm, the numerical stability

C.R=log (5-8)

of the algorithm is also considered. The following theorems show that the algorithm

presented in this chapter is very stable and insensitive to errors in the calculation process.

Theorem 5.6 In Eq. (5-3) , if f has a disturbance variable 0, i.e. f~ = f + 0, it satisfies
L = £, then [u — 7] < M|d).
Proof: Considering the unique solution of the Eq. (5-3) , £ is reversible, so

=l =1L u— L% = L7~ L7+ ) = 1L76] < 1L lyslol < M. O

5.4 Numerical examples

In this section, the method proposed in this chapter is applied to some Fredholm
IDEs to evaluate the approximate solution. In the example and example [5.2], the
reproducing space is Wg . The present method is compared with the multiscale Galerkin
method (MGM for short) and the finite element method (FEM for short). C.R stands for
the computed convergence order of the approximate solutions, which is defined by Eq.
(]E[) . Cond(A,) denote the spectral condition numbers of the matrices A,,.

Example 5.1 Consider the following boundary value problem!©"

1
u'(s) — f eu(tdr = f(s), se[0,1],

0

u(0) = u(l) = 0.
s—2) +s5+2
where f(s) =2 + (s=2)e 2 > . The exact solution of this problem is u(s) = s(s — 1).
S‘

The numerical results are given in table [5-1]. The results are compared with MGM.
What is more, table ﬂ shows the result of adding the disturbance § = 107> on the right-
hand side f, it indicates that the disturbance is hardly affect the results of our method,
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this is consistent with the conclusion of theorem [5.6]. In Fig.[5-1], the numerical solution
(the red dots) is solved by the proposed method for n = 15, and the black line is the
exact solution. All tables and figures show that the proposed approach is very stable and

effective.

Table 5-1: The errors between numerical solutions and exact solution of Example [5.1

MGM [60] Present method
n

le,, —u| C.R Max|u,, — u| CR Max|u, — i’
15 3.6085E-2 - 9.1142E-5 - 1.1089E-4

31 1.8042E-2 1.0000 1.1144E-5 3.0318 1.5318E-5
63  9.0211E-3 1.0000 1.5890E-6 2.8101  2.6036E-6
127  4.5106E-3 1.0000 2.7249E-7 2.5438  8.9845E-7
255 2.2553E-3 1.0000 5.4165E-8 2.3308  2.5499E-7
511 1.1276E-3 1.0001 1.1904E-8 2.1859  6.7512E-8

Table 5-2: The absolute errors of added the disturbance 10~ in Example 5.1

n Max|u, — ul C.R M'dxlﬁ:s?1 —u|

10 2.8676E-4 - 3.4648E-4
20 3.9560E-5 2.8577 4.9385E-5
40 5.1195E-6 2.9499 7.3729E-6
80 6.1431E-7 3.0589 3.2187E-6

0 T T T T T T T
\\ — Exact solution u /
Py \ # Numerical solutionu /

\\\\ / |
0.2 |- \\ |
0.25 L w\\\\’n““‘k-._ 1 .-/‘T'/ L '

1
a1

Fig. 5-1: The solutions in Example [5.1j(n = 15)

Example 5.2 Consider the following boundary value problem/©*¢!

I
w’(s) + su'(s) + mu(s) — f (s + Hu(t)dt = smcos(ms) — QS;_ 1, s € [0,1],
0

u(0) = u(1) = 0.
The exact solution of Example [5.1]is u(s) = sin(xs).
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T

S \\ ﬁ
iy o

1
0.1 0.2 0.3 0.4 05 0.8 0.7 0.8 09 1

5.2|(n = 63)

.....

Exact solution u
+ MNumerical solutionu_| |

o

Fig. 5-2: The solutions in Example

In table , the results are compared with MGM and FEM. And it is found that
these results are better than those obtained by MGM and FEM in higher resolution level.
In Fig.[5-2], the numerical solution (the red dots) is solved by the proposed method for
n = 63, and the black line is the exact solution. Fig.[5-3|shows that the condition numbers
of coefficient matrices are much smaller than these obtained by FEM. All the illustrative
tables and figures show that the increase in the number of node results in a reduction in
the absolute errors and correspondingly an improvement in the accuracy of the obtained
solutions. This goes in agreement with the known fact, the error is decreasing, where

more accurate solutions are achieved using an increase in the number of nodes.

Table 5-3: The errors between numerical solutions and exact solution in example 5.2
MGM [60] FEM [61]] Present method

" lu, —u| C.R Cond(A,) Max|u, —u| C.R Cond(4,) Max|u, —u/|

15 1.3311E-1 - 7.2411E+2 1.6421E-1 - 4 8047E+2  5.3499E-1
31 6.3906E-2 1.0586 2.9580E+3 49117E-2 1.7413 1.8042E+3  1.6259E-1
63 3.1599E-2 1.0161 1.1895E+4 1.2949E-2 19234 7.0018E+3  4.2968E-2
127 1.5754E-2 1.0041 4.7642E+4 3.2849E-3  1.9789 2.7597E+4  1.0903E-2
255  7.8715E-3 1.0010 1.9063E+5 8.2467E-4 1.9940 1.0959E+5  2.7372E-3
511  3.9350E-3 1.0003  7.6258E+5 2.0643E-4 1.9981 4.3679E+5 6.8519E-4
1023 1.9674E-3 1.0001  3.0504E+6 5.1632E-5 19994 1.7440E+6 1.7137E-4

5.5 Conclusion

In this chapter, a new algorithm for second-order Fredholm IDEs has been discussed.
The SRKM is reasonably simple because the author used a uniform homogeneous repro-

ducing kernel, and avoid the complex Schmidt orthogonalization process. The approxi-
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Condition Numbers

// i ——FEM
/’ _—— —+— Present Method| -

400 600 800 1000 1200

Fig. 5-3: A comparison of condition numbers of the coeflicient matrices in Example 5.2

mate solutions obtained by this method and their derivative are both uniformly convergent
with second order. The analysis of condition numbers and disturbance show that our algo-
rithm is stable. Both theoretical analysis and numerical examples show that the proposed

method is stable and can obtain optimal order of convergence.
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Chapter 6 The reproducing kernel method for linear
Volterra integral equations with variable

coeflicients

This chapter proposes a simplified reproducing kernel method to solve the linear
Volterra integral equations with variable coefficients. The main idea of the method is to
establish a reproducing kernel direct space that can be used in Volterra integral equations.
And this chapter analyzes the convergence order and stability of the approximate solution.
Then the uniform convergence of the numerical solution is proved, and the time consum-
ing Schmidt orthogonalization process 1s avoided. The proposed method is proved to be
stable and is not less than the second order convergence. The algorithm is proved to be

feasible and stable through some numerical examples.

6.1 Linear Volterra integral equations

In this chapter, by simplified reproducing kernel method, we get an approximate

solution for linear Volterra integral equations with variable coefficients as follows

an()fi (0 = buy f et 0 fi (00t + an() () - b f (e D (0t = 1y (x)

0 0

ax (%) fi(x) — bzlfx ka1 (x, 1) fr()dt + an(x) f2(x) — bxn fx koo (x, 1) fo()dt = up(x)

0 0 6-1)
where a;;(x),i,j = 1,2 are arbitrary smooth functions defined on the interval [0,1],
bij,i, j = 1,2 are given constants.

The integral equations is an important branch of modern mathematics, many mathe-
matical and physical problems need to be solved by integral equations or differential equa-
tions. The type of integral equations depending on the structure of integrals, for example,
Fredholm integral equations, Volterra integral equations and Fredholm-Volterra integral
equations. The model of Fredholm and Volterra integro-differential equations extends to
every field of application, such as wind ripple in the desert, nano-hydrodynamics and drop

6262

wise condensatio I. However, it is usually difficult to get an analytic solution of the
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integral and integro-differential equations, therefore, many researchers have extensive-
ly studied the numerical methods of Volterra integral equations in recent years!®"l F,

70

Mirzaee!™ used the rationalized Haar functions to solve the system of linear Volterra inte-

gral equations. L.H. Yang!"!"74l

provide a reproducing kernel method for solving the sys-
tem of the Volterra integral equations. F. Mirzaee!”®! solved the systems of linear Volter-
ra integral equations based on the Euler matrix method. An expansion method is used
for treatment of second kind Volterra integral equations system, E. Hesameddini”!
solved the Volterra-Fredholm integral equations based on Bernstein polynomials and hy-
brid Bernstein Block-Pulse functions. F. Mirzaee!”™ contributes an efficient numerical
approach to solve the systems of high-order linear Volterra integro-differential equations
with variable coeflicients under the mixed conditions.

As known to all, the application of reproducing kernel method for integral and differ-
ential equations has been developed by many researchers because this method is easy to
obtain the exact solution with the series form and to get approximate solution with higher

[7L115, 141

precision 1. Moreover, more and more scholars use the reproducing kernel method

to solve the problem of integral-differential equations! "4l

. The traditional reproducing
kernel method is very complicated because it contains Schmidt orthogonalization process.
The simplified regenerative kernel method proposed in this chapter avoids Schmidt’s or-
thogonalization process and eliminates need to calculate individual reproducing kernel
functions, Which makes it more widely applicable.

The aim of this chapter is to derive the numerical solutions of Eqgs. (6-1) in section
1. In section 2, we introduce the reproducing kernel direct space for solving problems.
Some primary results are analyzed in section 3. The numerical algorithm of approximate
solution is presented in section 4. Section 5 describes the convergence order and stability

analysis of approximate solution. In the section 6, the presented algorithms are applied to

some numerical experiments. Then we end with some conclusions in section 7.

6.2 Reproducing kernel direct space

In this section, the reproducing kernel space is given, and the reproducing kernel
direct space is defined that we need. We assume that Eqs. (6-1)) have the unique solution.

Reproducing kernel space W>[0, 1] is defined as:
W5[0, 1] = {u(x)|u’ is an absolutely continuous real value funcion in[0, 1], «” € L*[0, 1]}
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The inner product and norm are given by ref.[7].
Reproducing kernel space W,[0, 1] is defined as:
W10, 1] = {u(x)|u is an absolutely continuous real value funcion in[0, 1], %" € L*[0, 1]}

The inner product and norm are given by ref.[7].

The reproducing kernel spaces are W, and W, with reproducing kernel R,(x) and
r,(x), respectively.

In this chapter, consider that the exact solution of Egs. is a function vector, so,
we structure a reproducing kernel direct space, introduce product and norm.

Definition 6.1 The linear space W) is defined as

Wanl0, 17 = W,[0, 1T @ W10, 11 = {F(x) = (fi(x), LD 1fi1(x), fo(x) € W3[0, 1]}
The inner product and norm are defined by

(F(x), GO we,, = ([1(0), 1w, + (f2(x), &2(0))w,

IFOIGy,, = 1A, + 1A,
Theorem 6.1 The space W,,)[0, 1] is a Hilbert space.
Proof: Suppose that {F,(x)} >, is a Cauchy sequence in W, [0, 1], however,
Fn(—x) = (fl,n(x):ﬁz,n(—x))ra n= 15 2: Tt

s0, { fi..(x)}°2, and {f>,(x)} >, are Cauchy sequences in W», respectively.
Notice that W, 1s a reproducing kernel space, so, there are two functions

g1(x), g2(x) € W7, make
1fia) = g1, = 0. (1) = g2, — .
Let
G(x) = (&1(x), g20x)".
By the definition[6.1], G(x) € W3[0, 1], and
IF0 () = GOy, = I1F10(x) = 21N, + 1 f2n(x) = 2201, = 0.
So, the space W;[0, 1] is a Hilbert space, we call it the reproducing kernel direct

space. O

Similarly, the reproducing kernel direct space W, 1[0, 1] is defined as
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Chapter 6 The reproducing kernel method for linear Volterra integral equations with variable coefficients

W(L])[O, 1] - W] [0, 1] 5] W] [O, l]
= {U(x) = (u1(x), up(x))" |uty (x), ux(x) € Wy[0, 1]}

In order to solve Eqgs. (6-1) , we introduce a linear operator £ : W [0,1] —
Wanl0, 1],

LF =

Lu LD] {fl ] others F = (£}, f>)"
Lo Lol fo

and

Lifi = anfi(x) — by foxk“(x, 1 fi(t)dt
Lifs = anf(x) = by [0 kip(x,1) f(0dt
Lo1fi = an fi(x) — by fox ka1 (x, 1) f1()dt
Lnfr = anfr(x) —bxn fox koo (x, 1) fo(t)dt
By Ref.[7l], it’s easy to prove that £ is a bounded operator.

Then, Egs. (6-1) is equivalent to the operator equation in W;)[0, 1]
LF=U (6-2)

6.3 Basic properties

In this section, the approximate solution of Eqgs. is presented.
Take {x;}*, is dense on the interval [0, 1], put
Gip(x) = Lir,(x). i,j=12, k=12,
where L7 is the adjoint operator of Z;;.
Theorem 6.2 ¢ (x) = LijR(xp). 1,j=1,2, k=1,2,---
Proof: From the properties of the reproducing kernel function, it can be inferred that
¢z‘jk(x) = (L:J;rxk: RX)WQ
= ("xk, Linx)Wl
= L;iR.(x;)

Put

Ui (%) = ($11:(x), $12:(x), Win(x) = (P21:(x), pooi(x). i=1,2,---

Theorem 6.3 For each fixed n, {'7["'./'}?:% 1s linearly independent in W, 5[0, 1].
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n 2
Proof: Let0O = Z Z C,‘j{b;‘j(r).
i=1 j=1
Consider u; ;(t) € W,[0, 1], make

:Os t:)ﬂ,xz,"',kal,x;‘pr],"',xn
1 (O
# 0, others

and Wl [0, 1] > Mk,z(f) = (0. Put Uk(f) = (ngl(f),uk,z(f))T, ObViOUSly, Uk(t) € W(]_l)[o, 1]
Take Fk € W(g_g)[o, 1], make -EFk = Uk. SO,

n 2
0=(F.. > > Cihij)

i=1 j=1

= i(cil<Fka¢f1> + Co(Fr, ¥i2))

= i(cil(<ﬁ,1, Gr1i) + S d120)) + Coo({fr1, 2100 + {fr2, $22i)))

- i“(c“« fits Li175) + Frzs Linr)) + Coo(fits Loy + {frar LoFe )
i=1

= i:(cil«-!:llfk,ls ro) +{Liofios 1) + Co( Loy firs 1) + (Lo fr2s i)
pay

= i(cu(l:ufk,l(xf) + Lz fr2(xi) + Co( Loy fra(xi) + Lo fro(x0)))
i1

= Z(Ciluk,l(xf) + Ciuga(x;))
i1
= Criug,1(xz)

So,
ij] :0, k = 1,2,"‘ . 1

Similarly, we have C;» =0, k=1,2,--- ,n. ]

Theorem 6.4 {y; j}gcfiz)) 1s complete 1n space W, 1[0, 1].
Proof: For each F(x) = (fi(x), £2(x))" € W(25)[0, 1], it follows that (F(x), Yii(x)) = 0 for

everyi=1,2,---,j=1,2. So,

0 = (F(x), ¥ir(X)wiss
= (fi(x0), L] (x)w, + {f2(x), L7 (xX)w,
= (L fix), r(DNw, + (L2 fa(x), r (XD)w,
= Lifitx) + Linfolxi)
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Similarly, we have £, fi(x;) + L2 /5(x;) = 0. This is equivalent to LF = 0, Since
Egs. (6-2)) has a unique solution. It follows that

F=0

O

LetS, = SPQH{%_;}ET:%;- By the Theorem 6.2{and Theorem |6.3|, then one can obtain
that Sn C W(z‘g) [0, l]

The orthogonal projection operator is denoted by P, : W2)[0,1] — S,. Then we
obtain a theorem as follows, which is of great significance to us.
Theorem 6.5 If F € W(,5[0, 1] is the solution of Egs. , then F,, = P,F satisfies the

following
(Volidwe, =ui(x), i=1,2,---,n j=12 (6-3)
Proof: It can be proven that substituting F,, into Eq. holds true, in fact
PoF Yidwes = FPulidws, = F ¥indwa,,
= (1. L rdw, + o L) w,
= Linfitxi) + Linfa(xi)

= u1(x;)
Similarly, we have

(PoF Yio)we, = ua(x;)

In fact, F,(x) is an approximate solution of Eqgs. (6-2)) .
Theorem 6.6 If F € W,[0, 1] is the solution of Eqs. @) , then F,, converges uniformly
to F.
Proof: From the properties of the reproducing kernel function, it can be inferred that
/1)) = fraOI =1 = fras RO
<A = frallw, NIRAlw,
<M |lfi = finllw,

Similarly, we have

120 = Ol < M {1 = fanllw,
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6.4 Numerical algorithm

In this section, the numerical algorithm for the approximate solution F,, is given. By

the knowledge of previous section, the exact solution of Egs. (6-2)) can be expressed as

oo 2
F(v) = > > Coryj(x) (6-4)
=1 j=1I
AsF, c S, c Wayl0, 1], so, we obtain the approximate solution of Egs.
n 2
Fu(x) = > " Corif(0) (6-5)
i=1 j=1

To obtain the approximate solution F,, we only need to obtain the coeflicients of
each ¢;;j(x). Use ¢;;(x) to do the inner products with both sides of Eqgs. @ , by the
Theorem [6.5], we have

ch(%lslﬂml) + chz(%zs%f’ml) =u(x,), m=12,---,n
i=1 = (6-6)

Z C”(wil" wm2> + Z Cj2<¢j29 me> = uZ(xm): m = 1, 2-, R
i=1

J=1
Egs. (6-6) is the system of linear equations of Cy;,i = 1,2,--- ,n, j=1,2.
Let

(‘;lfi], '7[/ml> Tt <¢’j2s '/fml)
GZH =
(‘#il s '1[/;112> e (lylfjb $m2> i jk=12,
B = (uy(x1), -+ (), up(xy), -+ ua(x,))!
(n2) -

Consider that {‘r”ij(x)}(l,n is linearly independent in W, 5[0, 1], so, G !isexist. Then,

we have

(C11,Cr2, -+ . C1py €31, C, -+ ,Czn)T = ngl "B

6.5 Convergence order and stability analysis

In this section, the convergence order of the approximate solution is proved, and we
discussed the stability of approximate solution.
Theorem 6.7 The approximate solution F, of Egs. (6-2) converges to its exact solution F
with not less than the second order convergence.

Proof: The subtraction of the two equations in Egs. (6-1)) can obtain the following form
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a(x)fi(x) - f k(x,0) f1(D)dt = u(x) (6-7)

For each identified f>(x), u(x), a(x)(i k(x,t) in Egs. are known functions. Note

that Egs. is a linear operator equation £ f; = u in reproducing kernel space W,[0, 1],
take advantage of Theorem 4 in [[15]], we have f;, converges to f; not less than the second

order convergence. Therefore

/i) = fia(Ol < My = frallw, < MR,

In this chapter, we describe the approximation of F and F,, by Euclidean distance as

the following form:

d(F.F,) = \fmax|fi(0) = fi,(OP + max| o) = foa(0P

So,

d(F,F,) < (M h2)? + (Myh2)? = M3h?

where 4 is step-size on the interval [0, 1], M, M, M,, M5 are constants. |

Furthermore, the following rate of convergence formulas can be obtained:
g 1/1(xX) = fia(x)|
211X = fi2a(0)l

A = fra)
2A0) = fran)

The convergence order based on Euclidean distance is defined as follows:

1 d(F.F,)

"% d(F.Fy,)

In addition to the convergence order analysis of the algorithm, the numerical stability

C.R] =lo

C.R2 =lo

CRE =

of the algorithm is also considered. The following theorems show that the algorithm
presented in this chapter is very stable and insensitive to errors in the calculation process.
Theorem 6.8 In Egs. (6-2) , if U has a disturbance variable ¢, i.e. U=U+ o0, 1t satisfies
LF = U, then

IF = Fllwa2) < Mll6llwa.2)

Proof: Considering the unique solution of the Egs. , L is reversible, so
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IF = Fllwzn = 1£7'0 = L' Ullwn
= 1£7'U = LU + 6)llwan)
= ||-£7l5||wtz,2)
< ||J:_I||w(2,2) 1161w, 2.2)

< M||6]lw2.2)

6.6 Numerical examples

In this section, the method proposed in this chapter is applied to some linear Volterra
equations to evaluate the approximate solution. We compare the numerical results with
the other methods discussed in ref.[[72L 73| [77]]. Finally, the results show that our algorithm
is practical and remarkably effective.

Example 6.1 Consider the linear Volterra equations with variable coefficients!’*!

2xfi(x) — f 3 £,(0)dt + xfo(x) — f Qx + D) fp(Ddt = uy(x)
0 0

() - f 2+ 0 fi(0dt - 25 () — f 2+ Dt = 1)
0 0

540

with u;(x) = 2x, ua(x) = x — 25~ + % The exact solution is F(x) = (x + 1, —x)”.

Table 6-1: The absolute errors of fi(x) in Example 6.1

Absolute error 22 Present method

) 12(x) = f200(0)]  1f2(x) = fa50(0) 1/2(0) = f210(0)  1f2(x) = f2.50(0)]
0.1 1.6526E-2 8.0353E-4 9.8627E-4 7.9088E-6
0.2 3.7037E-3 1.6556E-5 4.3885E-4 2.5633E-6
0.3 5.5313E-4 8.4614E-6 1.8281E-4 4.6623E-7
0.4 6.1346E-4 6.9591E-5 3.8616E-5 2.8473E-6
0.5 1.5801E-3 8.9074E-5 2.3524E-4 4.9175E-6
0.6 3.2951E-3 5.9273E-5 4,1948E-4 6.7655E-6
0.7 4.7018E-3 7.2176E-5 5.9114E-4 8.4060E-6
0.8 5.7254E-3 8.3177E-5 7.4888E-4 9.8286E-6
0.9 6.6785E-3 9.2161E-5 8.9028E-4 1.1016E-5
1.0 7.6319E-3 9.9042E-5 1.0131E-3 1.1957E-5
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Table 6-2: The absolute errors of f>(x) in Example |6.1

Absolute error 72

Present method

|/2(0) = fr10(x0)|

|/2(x) = f2.50(x)]

|/2(x) = f2,10(0)

1/2(%) = f2,50(x)]

0.1 1.6526E-2 8.0353E-4 9.8627E-4 7.9088E-6
0.2 3.7037E-3 1.6556E-5 4.3885E-4 2.5633E-6
0.3 5.5313E-4 8.4614E-6 1.8281E-4 4.6623E-7
0.4 6.1346E-4 6.9591E-5 3.8616E-5 2.8473E-6
0.5 1.5801E-3 8.9074E-5 2.3524E-4 4.9175E-6
0.6 3.2951E-3 5.9273E-5 4.1948E-4 6.7655E-6
0.7 4.7018E-3 7.2176E-5 59114E-4 8.4060E-6
0.8 5.7254E-3 8.3177E-5 7.4888E-4 9.8286E-6
0.9 6.6785E-3 9.2161E-5 8.9028E-4 1.1016E-5
1.0 7.6319E-3 9.9042E-5 1.0131E-3 1.1957E-5

Table 6-3: Comparison of absolute errors and convergence in Example (6.1

n max|fi—-fi,l CR;y max|f,—fr,] CR, CRg

10 2.1255E-3 -

20 4.3934E-4 2.2
40 1.0316E-4 2.1
80 2.5038E-5 2.0

1.0131E-3 - -

2.2560E-4 2.1 2.2
5.2831E-5 2.1 2.1
1.2697E-5 2.1 2.0

Employing the simplified reproducing kernel method, we obtain the numerical re-
sults are given in Table [6-1]and Table [6-2] taking n=10,50. Lihong Yang et al™! use the
Schmidt orthogonalization method to solve the linear Volterra equations in the reproduc-
ing kernel space, this method is complex in computation, and the convergence order and
stability are not as good as the present method. In Table [6-3], we compared the absolute
errors and the order of convergence, it indicates that our method is more accurate than the
traditional reproducing kernel method, and the approximate solution has not less than the
second order convergence.

Example 6.2 Consider the following linear Volterra equations/”%!

Si(x) = fo x(rz - x)fi(Ddt - fo x(tz - x)fa(dt = x + %f + %x‘i - %xﬁ
' ! » 15 1,
_f tfi(de + fr(x) — f th(dt = x* — =x’ — —=x
0 0 3 4
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and exact solution F(x) = (x, x*).

Table 6-4: Absolute errors for Example

6.2

Absolute errorZ2

Present method

/100 = fis0(0)l

1/2(x) = f2,50(0)]

|f1(x) = f1,50(0)

1f2(x) = f2,50(x0)]

0.1 2.2500E-7 4.0839E-5 2.2552E-7 8.3705E-9
0.2 1.3644E-6 6.7404E-6 4.4246E-7 3.1843E-9
0.3 2.4508E-6 1.0417E-5 6.4908E-7 1.0682E-8
0.4 4.6226E-6 1.4523E-5 8.4201E-7 3.7710E-8
0.5 7.3781E-6 1.9340E-5 1.0192E-6 8.2320E-8
0.6 1.1063E-5 2.5027E-5 1.1800E-6 1.4912E-7
0.7 1.5766E-5 3.2174E-5 1.3247E-6 2.4314E-7
0.8 2.2068E-5 4.1132E-5 1.4549E-6 3.7012E-7
0.9 3.0466E-5 4.2400E-5 1.5738E-6 5.3653E-7
1.0 4.4805E-5 6.5250E-5 1.6823E-6 1.1336E-6

Table 6-5: Comparison of absolute errors and convergence in Example 6.2

n  max|fi - fi,] CR; max|f- o] CR, CRg

10 1.8831E-4 -

20 2.5224E-5 29
40 3.2595E-6 29
80 3.8726E-7 3.0

1.2393E-4 - -

1.6849E-5 2.8 29
2.1951E-6 2.9 29
2.7438E-7 3.0 3.0

Table 6-6: The absolute errors of added the disturbance 10~ in Example [6.2

n max|fi — fil CR, max |f> — fol CR, CRg
10 1.8577E-4 - 1.4270E-4 - -
20 2.3000E-5 3.0 3.5622E-5 2.0 2.5

Table [6-4] shows the numerical results and comparison with the others
methods(Ref.[72]). Table[6-5|shows the numerical results and the convergence order with
different n. Table shows the result of adding the disturbance 107> on the right-hand
side U, it indicates that the disturbance is hardly affect the results of our method. All
tables show that the proposed approach is very stable and effective.
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Example 6.3 For the last example, consider the following Volterra equation

SI3TT

Jilx) = f (sin(x — 1) = 1) fi(t)dt — f (1 —tcos x) fo()dt = u;(x)
0 0

- [ s - [ npwds = e
0 0

u,(x) and u»(x) are chosen such that the exact solution is F(x) = (cosx, sinx)".

Table 6-7: Comparison of the absolute errors in Example

6.3

Present method (n = 80)

x o e(fy)tH e(fo)HH e(fi)tH! e( o)t
lfi = fial 12— foul
0.2 2.0571E-7 7.2964E-7 2.0571E-7 7.2964E-7 2.9204E-8  6.5880E-7
04 2.3189E-6 6.5961E-7 2.3189E-6 6.5961E-7 3.7743E-8  7.3077E-7
0.6 3.8191E-5 3.7139E-6 3.8191E-5 3.7140E-6 4.6379E-8  7.7264E-7
0.8 2.8744E-4 29571E-5 2.8744E-4 2.9572E-5 39317E-8  7.8413E-7
1 1.3807E-3 1.7559E-4 1.3807E-3 1.7560E-4  2.0401E-9  7.4482E-7

Table 6-8: Comparison of absolute errors and convergence in Example (6.3
n max|fi - fisl CR; max|f,-foul CR, CRg
10 6.4180E-5 - 6.4179E-5 - -
20 4.2627E-6 3.9 4.2627E-6 2.8 2.8
40 3.1270E-7 3.7 3.1270E-7 2.9 2.9
80 4.6944E-8 2.7 4.6944E-8 2.9 2.9

Numerical results in Example [6.3] are given in Tables [6-7)and [6-8]. Table [6-7) shows
the comparison of the numerical results of the absolute error functions obtained by the
present method, the Euler matrix method!”®! and the collocation method ! for n=80.
Fig. shows the errors f;,(x) — fi(x) in different situations, Fig. @ shows the semi
logarithmic coordinates of absolute errors e;,,(x) = |f>,(x) — f>2(x)| in four cases. All of

tables and figures show that our method converges rapidly.

6.7 Summary

In this chapter, a simplified reproducing kernel method for linear Volterra integral e-
quations, the convergence order and stability of the approximate solution are analyzed for
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the first time. A reproducing kernel direct space is cleverly built, the reproducing space
are reasonably simple because the author avoid the time consuming Schmidt orthogo-
nalization process, and the approximate solution we get is no less than the second-order
convergence. In the sixth section: Numerical examples, we do three experiments with the
new algorithm, and make a comparison with other algorithms. In fact, this technique can
be extended to other class of integral and differential equations. Although we just consid-
ered linear Volterra integral equations in our presentation, by that analogy, the algorithm
can also be applied to systems of linear Fredholm-Volterra integral and Fredholm-Volterra
integro-differential equations. From the illustrative tables and figures, we obtain that the

algorithm is remarkably accurate and effective as expected.
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The reproducing kernel method is an important numerical
calculation method. This monograph combines the theory
of reproducing kernel methods to construct several typical
reproducing kernel spaces, including discontinuous
reproducing kernel spaces and reproducing kernel direct
sum spaces, which are used for numerical solutions of
impulse differential equations, integral equations, and
systems of integral equations, as well as analysis of
algorithm stability and convergence. This monograph can
be used by scholars in computational mathematics,
computer science, and related fields.
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