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Abstract  
 

Bluetongue virus (BTV) produces an economically important 

disease in ruminants of compulsory notification to the OIE. BTV 

is typically transmitted by the bite of Culicoides spp., however, 

some BTV strains can be transmitted vertically, and this is 

associated with fetus malformations and abortions. The viral 

factors associated with the virus potency to cross the placental 

barrier are not well defined. The potency of vertical transmission 

is retained and sometimes even increased in live attenuated BTV 

vaccine strains. Because BTV possesses a segmented genome, 

the possibility of reassortment of vaccination strains with wild-

type virus could even favor the transmission of this phenotype. 

In the present review, we will describe the non-vector-based 

BTV infection routes and discuss the experimental vaccination 

strategies that offer advantages over this drawback of some live 

attenuated BTV vaccines. 
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Introduction  
 

Bluetongue (BT) is a disease of mandatory notification to the 

World Organization of Animal Health (OIE) that causes 

important economic losses globally estimated to be around three 

billion dollars per year [1]. Bluetongue virus (BTV) is the 

etiological agent responsible for BT, a disease that affects 

domestic and wild ruminants and that can be particularly severe 

in sheep [2,3]. BT disease clinical signs are characterized by the 

virus preferred tropism for endothelial cells [4]. As a 

consequence of endothelial cell damage, edema and 

hemorrhages can take place in BTV infections. Early clinical 

signs are pyrexia, depression, and loss of appetite [5,6]. In some 

cases, the disease progresses to conjunctivitis, congestion of the 

nasal and oral mucosa and edema of the face and lip. Sometimes 

hemorrhagic lesions occur which can progress to the cyanosis of 

the tongue that gave its name to the disease. In the most severe 

cases, respiratory distress and esophageal paresis can develop 

which can ultimately lead to the death of the infected animal. 

Although BTV infection is not always fatal, it typically leads to 

reduced productivity in ruminants (e.g., reduced milk yield, 

weakness of the animal, abortion or stillbirth)[5,6]. BTV 

therefore produces a debilitating disease that affects the 

livestock industry. 
 

BTV circulation was once restricted to the subtropical regions 

with occasional incursion in more temperate areas of the globe. 

However, it has now become apparent that the disease has 

become endemic in the European part of the Mediterranean 

basin [7,8]. Vaccination can control outbreaks; however, at least 

28 different BTV serotypes with little cross-reactivity have been 

identified so far [9–12]. This complicates disease control as 

multiple vaccines are required for protection in regions where 

multiple serotypes are circulating. BTV serotypes have been 

classified as “classical” (serotypes 1–24) or “atypical” for some 

recent isolates that predominantly affect small ruminants with 
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little to no clinical signs [13–16]. Only “classical” BTV 

serotypes (1–24) are notifiable to the OIE [17]. 
 

BTV Viral Particle  
 

BTV belongs to the Reoviridae family and is prototypical of the 

Orbivirus genus. BTV is a double stranded RNA (dsRNA) virus, 

its genetic material consists of 10 segments (Figure 1) [18], 

encoding for 7 structural proteins (VP1 to VP7) and at least 4 

non-structural proteins (NS1 to NS4). A putative fifth non-

structural protein (NS5) has also been reported [19]. The viral 

particle consists of a two-layer core that encapsulates the RNA 

polymerase and the segmented genome. The outer core is 

composed of the highly variable VP2 protein and the VP5 

protein that acts as the main anchor of this layer to the inner 

core. This outer core is responsible for the interaction with the 

host cellular components that allow virus cell entry. Most 

neutralizing antibodies are also directed against the proteins in 

this layer and mostly against VP2. The high variability of VP2 

confers the virus with a means to evade neutralizing antibodies, 

which, as a result, generates the 28 serotypes with little cross-

reactivity. 
 

 
 

Figure 1: Schematic representation of bluetongue virus (BTV). (A) The 

bluetongue viral particle is composed of an outer capsid that consists of the 

VP2 and VP5 proteins, and an inner core formed by the VP7 and VP3 proteins. 

VP3 anchors the RNA polymerase VP1 to the capsid. The RNA capping and 

methyl transferase VP4 and the helicase VP6 are associated with VP1. 

Enclosed within the inner core, the BTV genome consisting of 10 segments of 

dsRNA is found. (B) The segmented genome of BTV encodes for 7 structural 

proteins (VP1 to VP7) and at least 4 non-structural proteins (NS1 to NS4). 

Segment 1 encodes for the RNA polymerase VP1. Segment 2 encodes for the 

highly variable VP2. Segment 3 encodes for the inner core protein VP3. 
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Segment 4 encodes for the methyl transferase and RNA capping enzyme VP4. 

Segment 5 encodes for NS1, a non-structural protein that forms cytoplasmic 

tubules. Segment 6 encodes for the outer capsid protein VP5. Segment 7 

encodes for the inner core protein VP7. Segment 8 encodes for NS2, an RNA 

binding non-structural protein expressed in viral inclusion bodies. Segment 9 

encodes for the helicase VP6 and for NS4, a non-structural protein involved in 

immune evasion. Segment 10 encodes for NS3 and its isoform NS3a, which 

are polyfunctional non-structural proteins involved in viral particle exit from 

the cell as well as in interference with the mammalian IFN system. Segment 10 

also putatively encodes for a fifth non-structural protein (NS5), which could be 

implicated in cellular shutdown. (Created with Biorender.com). 
 

Once internalized, the outer core is destabilized by low pH, 

which allows VP5-mediated liberation of the highly stable inner 

core into the cytoplasm [20,21]. The inner core is composed of 

the VP7 and VP3 proteins and serves as a protective shell for the 

viral replication machinery. VP3 also anchors the RNA 

polymerase VP1 to the inner core [22]. Core-like particle 

assembly experiments have also indicated that the RNA capping 

enzyme and methyl transferase VP4 is associated with the VP3-

VP1 complex [23]. The spatial distribution within the core of the 

RNA helicase VP6 is less well characterized, but its presence is 

important for the correct packaging of the dsRNA genome [24]. 

The inner core also contains the segmented RNA genome. 
 

Non-structural proteins are involved in promoting viral 

replication in the host cells and in interfering with immunity. 

NS1 forms cytoplasmic tubules that promote viral protein 

expression [25]. NS1 enhancement of viral mRNA translation 

relies on two zinc finger-like motifs present in the protein and on 

the transition from the inactive tubular state to an active non-

tubular form [26]. NS2 is the most abundant protein in viral 

inclusion bodies (VIB). VIB formation is dependent on NS2 

phosphorylation, which is enhanced by calcium ions [27]. NS2 

is an RNA binding protein that facilitates the assembly of new 

viral inner cores [28]. NS3, and its shorter isoform NS3a which 

lacks the first 13 N-terminal amino-acid residues, is involved in 

virion egress [29–31]. NS3 can act as a viroporin, thus easing 

the release of new viral particles [32]. NS3 also contributes to 

the maturation of the viral particle, possibly through its binding 

to VP2 [33] which promotes the release of two-layered mature 

viral particles. VP3, NS3, NS4 and the putative NS5 are 

involved in countering the antiviral cell response. VP3, NS3 and 
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NS4 can act as IFN antagonists (reviewed in [34]). VP3 can 

impair IFN induction [35], while NS3 and NS4 can counter IFN 

induction as well as type I and type II IFN signaling [36–40]. 

Finally, the putative NS5 has been shown to promote cellular 

shut-off in transfection experiments [19]. 
 

BTV is Mainly an Arbovirus, but It Can Be 

Transmitted through Other Routes [MH] 
 

BTV is principally an arthropod-borne virus (arbovirus) that is 

transmitted by the bite of Culicoides spp. to ruminants [41] 

(Figure 2A). However, BTV can also be transmitted through 

other routes (Figure 2B–E). There is evidence that large African 

carnivores can become infected probably through feeding on 

BTV-infected ruminants [42]. Similarly, BTV-8 could be 

transmitted to Eurasian lynx through this oral route [43]. The 

significance of these findings in the wider context of BTV 

transmission is unclear, but it is unlikely to have a high 

epidemiological impact. 
 

 
 

Figure 2: Transmission routes of BTV in ruminants. (A) Typically, BTV is 

transmitted to the mammalian host through the bite of infected Culicoides spp. 

(B–E) Other transmission routes have nonetheless been documented. (B) BTV 

can be transmitted by direct contact in some rare cases, probably through 

sharing of water and food trough or consumption of infected placenta or 
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colostrum. (C) BTV affinity for erythrocytes makes mechanical transmission 

possible. Infection by sharing contaminated needles and transmission by tick 

bites has been documented. (D) Venereal transmission through the semen of 

infected ruminants has also been demonstrated. (E) Finally, vertical 

transmission from the mother to the fetus is associated with some BTV strains. 

This often leads to abortions, stillbirths or lambs/calves with neurological 

issues. (Created with Biorender.com). 

 

Horizontal transmission in ruminants of BTV-1, BTV-2 and 

BTV-8 has been documented under experimental conditions 

[44–46]. Naïve animals housed with infected counterparts can, 

in some cases, become infected. This transmission route is 

probably the result of animals being in close proximity and/or 

sharing food and water troughs. Oral transmission in ruminants 

is also suspected in the field as a result of ingestion of 

contaminated placenta or colostrum [47,48]. The direct contact 

route appears to be particularly important in the transmission of 

some “atypical” BTV serotypes that specifically infect small 

ruminants [49,50]. From an epidemiological perspective, 

horizontal transmission is unlikely to be a major component of 

epizootic episodes, although it could have an impact on BTV 

morbidity in farms with densely housed livestock. 

 

Since BTV possesses an affinity for erythrocytes [51], it is 

plausible that it can be transmitted through mechanical means. 

Indeed, there are instances in which this transmission route has 

been demonstrated. Transmission through sharing infected 

needles is documented, even in the absence of visible blood 

contamination (subcutaneous inoculation) [52], thus indicating 

that sharing needles for inoculations between ruminants poses a 

risk of BTV transmission. Tick transmission has also been 

documented [53]. Indeed, several species of ticks can become 

infected by BTV-8, and the virus can be found in salivary glands 

and thus could potentially be transmitted to ruminant hosts [54]. 

In the same study, BTV was shown to pass transstadial stages in 

hard ticks (nymph to adult) and to infect eggs in soft ticks [54]. 

These phenomena could contribute to BTV overwintering 

mechanisms, although this has yet to be confirmed. Tick 

transmission is nonetheless unlikely to be a major route of 

disease spreading. 
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BTV is also known to target ram and bull semen quality and can 

be isolated from this fluid in infected animals [55,56]. Recently, 

BTV transmission to heifers through insemination with semen 

from naturally infected bulls has been demonstrated [57]. 

Previous reports had already established that BTV could be 

transmitted through this route using semen from experimentally 

infected ruminants [58,59]. This transmission route has 

implications in disease control, as it is now suspected that the re-

emergence of BTV-8 in France in 2015 could be the result of 

insemination with frozen semen obtained from a 2008 infected 

animal [60]. 

 

Vertical transmission from the pregnant female to the fetus is the 

alternative BTV transmission route with the most 

epidemiological significance. Indeed, venereal BTV 

transmission can also result in vertical transmission of the virus 

to the fetus, which often leads to abortions [57]. Vertical BTV 

transmission was first suspected in the 1950s as a result of 

vaccination with a live attenuated virus that increased stillbirth 

and weak lambs in vaccinated flocks [61]. Transplacental 

transmission was subsequently confirmed in sheep, cattle, goat 

and elk [62–66]. For a while, transplacental transmission was 

associated with live attenuated vaccine strains that had been 

passaged in embryonated chicken eggs (expertly reviewed in 

[63]). However, this feature has now also been associated with 

some BTV field strains [44,46,64,67–71] such as the BTV-8 

responsible for the 2006 European outbreak, and thus, vector 

infected ruminants can transmit the virus to their offspring. It 

should be noted that BTV vertical transmission depends greatly 

on isolates. The factors that govern BTV vertical transmission 

are unknown but appear to be intrinsic to the virus as the rescued 

reverse genetic virus of a BTV-2 strain known to cross the 

placental barrier maintained this phenotype [44]. Curiously, 

BTV effects on reproduction are not limited to the ruminant 

hosts of the disease. There is evidence that BTV can produce 

abortions in dogs and even cause mortality in pregnant bitches 

[72–75]. This further indicates that BTV possesses intrinsic 

mechanisms that allow it to cross the placental barrier. From an 

epidemiological perspective, vertical transmission could be 

involved in overwintering, as newborn calves/lambs can be BTV 
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positive, and thus could potentially start a new cycle of infection 

by passing the virus to the arthropod vector. Thus, vertical 

transmission is an aspect of BT disease that needs close 

attention. 

 

Impact of BTV Vertical Transmission  
 

As previously stated, BTV infection in pregnant cows and ewes 

can lead to abortion or weak offspring. This represents an 

important economic setback for livestock farming. Moreover, 

transplacental transmission could contribute to BTV 

overwintering mechanisms. This aspect of BTV infection is 

often underestimated, and indeed a study found a 56% 

probability of vertical transmission events for BTV-8 which 

indicates that this transmission route could be more frequent 

than previously thought for some BTV isolates [76]. 

 

Early studies established BTV tropism for brain tissue in 

infected fetuses that resulted in congenital brain malformation 

[77–79]. The structural protein VP5 has been associated with 

viral neural tropism in newborn mice [80]. The teratogenic 

effects on fetuses of BTV during gestation depend greatly on the 

time of infection (reviewed in [81]). Effects on the fetuses are 

more severe at the early stage of gestation, and they appear to 

decrease as fetus immunocompetence develops from days 60–70 

in sheep and days 120–130 in cattle [81–83]. Nonetheless, brain 

affectations, such as encephalitis, can still be detected in animals 

apparently born healthy but that were exposed to the virus [84]. 

Vertical transmission appears to be more likely when infection 

occurs in early to mid-gestation [85–87]. 

 

Fetus exposure to BTV in early pregnancy leads to cavitating 

white matter brain lesions [77] that are the results of the 

destruction by the virus of stem cells from the central nervous 

system [81]. Once pregnancy advances and the BTV-susceptible 

glial and neuronal precursor cells migrate to the white matter, 

the teratogenic effects of BTV infection in fetuses are 

diminished [81]. Infections in late pregnancy typically produce 

mild encephalitis and premature births [84,88,89]. Newborn 

calves/lambs exposed to BTV in utero can be born PCR positive. 
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This has been proposed as a mechanism for virus overwintering 

in climates in which vector activity is greatly reduced in winter 

[62]. Indeed, the virus can be isolated in some instances from 

newborn calves [67] and newborn calves can remain PCR 

positive for up to five months [70], which supports the idea that 

transplacental transmission can lead to BTV overwintering. 

 

In most cases, newborns that became infected in utero develop 

antibodies and are seropositive at birth. In some cases, PCR 

positive but seronegative calves have been reported [67]. This 

could be indicative of a tolerance to BTV, which could lead to 

chronic infection in these animals. Given the differences 

between the infant and adult immune system, viral infection in 

early life can have very different outcomes to infection in 

adulthood [90]. For instance, perinatal infection with hepatitis B 

virus results in persistent infection in approximately 90% of 

cases, whereas infection in adults only results in 5% of cases 

becoming persistent [90]. In the case of BTV, a study has found 

that infected newborn calves become PCR negative by 6 months 

[70]. BTV is therefore unlikely to produce chronic infections in 

young animals, but rather, as in the case of infection in adults 

[91], prolonged viremia is observed. This feature of BTV 

infection is thought to facilitate the transfer of the virus back to 

the vector and could possibly contribute to the re-emergence of 

the virus in spring. 

 

The effects of BTV infection in early life on the repertoire of 

cells that respond to BTV are unknown. Infection could lead to 

an immunocompromised repertoire of T and B cells that respond 

to the virus. Further longitudinal studies will be required to 

assess the effects of BTV infection on adaptive immunity at 

different timepoints in animals’ lives. A compromised adaptive 

response to BTV due to an early life encounter with the virus 

could contribute to the characteristic prolonged viremia as 

adaptive immune cells fail to be optimally activated upon 

subsequent encounters. Indeed, we have shown in sheep that 

BTV limits humoral responses by targeting follicular dendritic 

cells, and this delays antibody response and potentially reduces 

IgG affinity for BTV antigens [92]. Furthermore, BTV infection 

is known to produce leukopenia [93] and, in some cases, limits 
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the response to T cell mitogens [94]. These immunosuppressive 

phenomena could prolong virus circulation. Further work will be 

required to fully elucidate the effects of BTV infection on the 

immune system of young ruminants and determine whether 

infection in early life leads to deleterious effects on viral 

recognition in later life. 

 

It is important to note that vertical transmission appears to be a 

feature of BTV infections limited to some strains. As previously 

mentioned, vertical transmission was initially thought to result 

from virus adaption to tissue culture conditions that favored the 

transmission through the transplacental barrier [63]. The 

overwhelming evidence that the field BTV-8 strain responsible 

for the 2006 European outbreak can be transmitted vertically has 

nonetheless challenged this view [44–46,67–70]. Since BTV 

genetic material is segmented, host co-infection with several 

BTV serotypes can result in reassorted viral progeny (i.e., a viral 

progeny in which segments that originate from the different 

serotypes are mixed) [95]. Sequence analysis indicated that the 

BTV-8 strain responsible for the outbreak in Northern Europe in 

2006 did not originate directly from the BTV-8 live attenuated 

vaccine strain, but that it was a reassortant carrying segments 

from different serotypes [96]. This could have led to the 

introduction of the genetic determinants responsible for 

transplacental transmission in this strain. In the absence of 

studies that characterize the viral factors responsible for vertical 

transmission, it is difficult to discuss whether this feature was 

always present in the field strains or was introduced as a result 

of reassortment of field strains with live attenuated vaccine 

strains. Evidence that a reverse genetic BTV-2 strain was still 

capable of vertical transmission indicates that this characteristic 

is part of the virus make-up [44]. In any case, it is now clear that 

vertical transmission can be a feature of some BTV outbreaks 

and should therefore be monitored given its impact on 

reproduction. 
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Vaccination as a Strategy to Prevent BTV 

Vertical Transmission  
 

Vaccination remains one of the most effective methods to 

combat infectious disease. This prophylaxis is probably the most 

cost-effective control method to prevent disease spreading: it 

protects animals, limits or stops disease transmission, and saves 

on resources that would have to be destined for disease 

treatment. Vaccination is an essential tool in animal health and 

in the fight against poverty [97]. 

 

Vaccination that would prevent BTV vertical transmission has 

several benefits for ruminant production. It would limit the 

abortions, stillbirths and weak offspring that result from in utero 

BTV infection, thus increasing productivity. It would also limit 

the possibility of disease overwintering in temperate climates, as 

newborns would not carry infective BTV, and thus could not 

trigger a new cycle of infection in the spring. Maternal 

vaccination could also provide passive immunity to the offspring 

through antibody transfer by colostrum intake after birth [98]. In 

the case of BTV, protection through colostrum intake could 

prevent newborns from becoming a reservoir for BTV 

transmission. 

 

Vaccines are still being developed for arboviruses such as 

Chikungunya, dengue and Zika viruses, which can be 

transmitted vertically in humans [99]. An important 

consideration for these vaccines is their capacity to block 

vertical transmission, as these infections can have severe 

implications for the fetus [99]. The current vaccine for dengue 

virus is not recommended during pregnancy as insufficient data 

is available on its benefit [100], while preclinical studies have 

demonstrated some promising results for Zika virus candidate 

vaccines in preventing vertical transmission [101,102]. 

Evaluation of vaccine efficacy in terms of protection from 

vertical transmission in clinical trials can be difficult in these 

diseases owing to the unpredictable nature of arbovirus 

outbreaks. This implies that robust preclinical models are 

necessary to evaluate the effects of vaccination on vertical 

transmission. 
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Models to study BTV vertical transmission have been described 

in ruminants and mice [103,104]. Infection of pregnant 

ruminants in the most susceptible gestation period (typically 

between 1/3rd and 2/3rd of the gestation period) has been used to 

study the frequency of vertical transmission and BTV 

teratogenic effects [103]. A murine model in which the type I 

IFN receptor activity was blocked by antibody injection has also 

been described to study BTV transplacental transmission [104]. 

The classic IFNAR(-/-) murine model for screening BTV vaccines 

[105] is, however, unlikely to be useful to study vaccine 

effectivity against vertical transmission as infected mice 

typically succumb to the disease within 5–10 days. Thus, the 

assessment of vaccination efficacy against transplacental 

transmission will require the use of BTV vertical transmission 

models. 

 

The identification of BTV strains that are consistently capable of 

vertical transmission is also a requisite to study not only the 

pathogenesis of the infection but also the putative capacity of 

vaccines to prevent transmission through this route. Indeed, 

there is evidence that vaccination with inactivated BTV vaccines 

can limit vertical transmission of BTV-8 [71]. Santman-Berends 

et al. showed that none of the 256 calves born from BTV-8 

vaccinated dams were positive by PCR for BTV [71]. Moreover, 

13 dams that were seropositive before pregnancy did not give 

birth to BTV positive calves, indicating that exposure to the 

same BTV strain prior to pregnancy may also limit vertical 

transmission events [71]. There is a report of a calf born with 

hemorrhagic artery lesions (a hallmark of BTV infection) from a 

vaccinated dam, although the calf was negative by PCR at the 

time of assessment [106]. Overall, it appears that vaccination 

with inactivated vaccines could limit BTV vertical transmission, 

although further work will be required to confirm this. In the 

next section we will provide a brief overview of the vaccination 

strategies being developed for BTV and whether they could 

protect from vertical transmission. 
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BTV Vaccines: Live Attenuated, Inactivated or 

Recombinant Vaccines?  
 

The pros and cons of BTV vaccine strategies are summarized in 

Table 1. As previously discussed, the main problem of BTV live 

attenuated vaccines is the possibility that, in spite of their 

attenuation, they acquire a phenotype capable of crossing the 

placental barrier that leads to abortions and teratogenesis in the 

fetus [61,77–79]. Moreover, live attenuated vaccines can be 

contaminated with exogenous viruses that can be pathogenic in 

some cases [72,107,108]. These drawbacks led to the 

development of inactivated BTV vaccines, which are effective 

and safe, but typically protect against only one serotype. The 

reduction in incidence of BTV-8 vertical transmission in 

vaccinated dams indicates that classical inactivated BTV 

vaccines can also offer protection to the fetus [71]. This is 

probably the result of the protection provided to the mother by 

the vaccine, which limits infection, and of antibody transfer 

from the mother to the newborn, which protects the newborn in 

early life. Overall, it appears that immunity to BTV can limit 

vertical transmission, but little is known on the mechanisms that 

afford this protection. 

 

Another issue of “classical” vaccines is that they cannot 

differentiate infected from vaccinated animals (the so-called 

DIVA approach). A DIVA vaccine simplifies serological 

surveillance of vaccinated populations; this is therefore highly 

recommendable for disease control in disease-free regions that 

are at risk of outbreaks. DIVA vaccines are also ideal for 

eradication programs as they allow surveillance once 

vaccination campaigns are finished and animal trade is ready to 

resume. Typically, “classical” vaccines” only offer protection 

against re-infection with a virus from the same serotypes, which 

implies that multiple BTV vaccines need to be administered in 

regions where several serotypes are circulating. Thus, one of the 

ultimate goals in BTV vaccinology is to develop vaccine 

formulations that provide protection against multiple serotypes. 

Advances in molecular biology and recombinant protein 

technology have promoted the development of vaccine 
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alternatives to BTV live attenuated and inactivated vaccines that 

aim to overcome these drawbacks of “classical” vaccines. 

 

Broadly speaking, alternative BTV vaccines can be divided into 

three categories: (1) recombinant BTV protein vaccines; (2) live 

reverse genetics BTV vaccines; and (3) viral vector vaccines 

expressing BTV proteins [109]. The capacity of these vaccines 

to prevent vertical transmission has not been tested so far, but it 

is likely that if they confer good BTV immunity they will also 

limit all transmission routes. It should be noted that the 

description of a murine model of vertical transmission [104] 

could now allow testing of these alternative vaccine 

formulations in a preclinical model, thus facilitating the 

screening of candidate vaccines that could prevent vertical 

transmission. 

 

Recombinant BTV protein vaccines include BTV subunit 

proteins expressed by different systems (insect cells [110,111], 

plant [112], yeast [113]); or bluetongue virus-like particles [114] 

that consist of the BTV capsid proteins expressed without the 

virus genetic material. Recombinant BTV protein vaccines can 

elicit immune responses in ruminants and even provide 

protection [115–117]. These approaches are deemed extremely 

safe, as these formulations are unable to replicate and therefore 

cause disease. They are also DIVA, as serological tests can 

easily differentiate animals vaccinated with vaccine subunits, as 

opposed to infected animals, which will also present antibodies 

to BTV proteins that are not present in the vaccine formulation. 

In spite of their safety, these approaches remain nonetheless 

quite expensive for veterinary medicine, and inactivated whole 

virus vaccines, which are cheaper to manufacture, are preferred. 

The advent of plant-based expression systems for these BTV 

constructs [112,115] could, however, change this in the long-

term. 

 

Reverse genetics technology for BTV [118] has opened new 

doors for the development of live vaccines in the field. This has 

allowed, for instance, for the introduction of alternative 

serotype-defining outer core proteins (VP2 and VP5) on the 

backbone of a live attenuated virus [119]. Disabled infectious 
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single cycle (DISC) BTV vaccines have been developed by 

packaging a segment 9 that contains large deletions into the viral 

particle [120]. Since segment 9 encodes for the helicase VP6 

that is critical for new viral particle assembly [24], this DISC 

virus could infect and express BTV RNA (except for VP6) but 

could not package new viral particles and thus spread in the host. 

Disabled infectious single animal (DISA) vaccines have also 

been described [121–123]. This was achieved by a deletion in 

segment 10 that encodes for NS3/NS3a. NS3/NS3a is not 

required for replication in mammalian cells but it is critical for 

virus release from Culicoides spp. [124]. Thus, the DISA 

vaccine can replicate in the ruminant host but cannot in the 

vector [124]. These live BTV vaccines designed by reverse 

genetics have been shown to protect ruminants from virulent 

virus challenge [119–122]. Because they mimic a natural 

infection, they have the potential to be effective as a single dose 

vaccine. Diagnostic tests can also be designed so that they can 

be considered DIVA vaccines. The risk of reversion to virulence 

is nonetheless still present, and reassortment during concomitant 

infection with wild-type BTV remains a possibility. Moreover, 

because attenuation has been associated with vertical 

transmission for some vaccine strains [61,63,65], the safety 

assessment of these live reverse genetics attenuated vaccines 

should probably include their capacity to cross the placental 

barrier. 

 

Viral vector vaccines are based on the premise of activating 

innate immunity to provide sufficient adjuvancy so that an 

adaptive immune response is mounted to the antigen expressed 

by the vector [125–127]. Several platforms have been employed 

to induce immunity to BTV in the natural host. These include, 

among others, poxviruses [128–130], adenoviruses [130–132], 

Rift Valley fever virus (RVFV) [133,134], or herpesviruses 

[135,136]. These recombinant constructs were able to induce 

immunity to BTV in murine models and/or in the natural host, 

and protection was also demonstrated in some studies in the 

natural host [129–131,133,134]. It should be noted that most 

protection studies with viral vectors in ruminants only detected 

partial protection, as in most cases, in spite of the absence of 

clinical signs, some level of viral replication could be detected 
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by PCR. Vaccines based on viral vectors nonetheless offer 

multiple advantages over “classical” vaccines. They are typically 

thermotolerant formulations, which facilitate transportation to 

remote areas with little infrastructures. They are non-pathogenic 

as they are often based on replication-defective viruses. They 

can offer protection over multiple BTV serotypes with the same 

formulation [128,132]. Recombinant vector vaccines based on 

attenuated vaccine strains, such as RVFV, can even induce 

bivalent protection in ruminants against RVFV and BTV [133]. 

They are also DIVA vaccines as only a fraction of BTV antigens 

are expressed in the recombinant vector, and thus a DIVA 

diagnostic test can be designed around these formulations. The 

correct cocktail of BTV antigens that provides a broad spectrum 

of protection is still the subject of active research in the field. It 

remains to be determined whether the immunity to BTV that 

viral vector vaccines produce is sufficient to limit vertical 

transmission. 

 
Table 1: Pros and cons of BTV vaccine strategies. 

 

 Vaccine Type Protection 

Risk of BTV  

Vertical 

Transmission 

DIVA 1 

Classical 

Live 

attenuated 

Yes 

(serotype 

specific) 

Possible No 

Inactivated 

Yes 

(serotype 

specific) 

No No 

Alternative 

Recombinant protein 

BTV proteins 

[110–113] 
Yes No Yes 

BTV VLP 2 

[114] 
Yes No Yes 

Live reverse genetics 

DISC 3 [120] Yes 

Unlikely; 

Needs to be 

tested 

Yes 5 

DISA 4 

[121,123] 
Yes 

Needs to be 

tested 
Yes 5 

Viral recombinant vectors 

Poxvirus  

[128–130] 

Yes 6 

(potential for 

multiserotype) 

No Yes 
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Adenovirus[13

0–132] 

Yes 6 

(potential for 

multiserotype) 

No Yes 

Rift Valley 

Fever Virus 

[133,134] 

Yes 6 

(bivalent BTV 

and RVFV) 

No Yes 

Herpesvirus 

[135,136] 

Yes 6 

(not tested in 

natural host) 

No Yes 

 
1 DIVA: differentiation between infected and vaccinated animals. 2 VLP: 

virus-like particle. 3 DISC: disabled infectious single cycle. 4 DISA: disabled 

infectious single animal. 5: DIVA test needs to be designed around segment 

product deficiency. 6: Protection is often partial. 

 

As previously stated, none of these experimental vaccines have 

been tested for their potency in inhibiting BTV vertical 

transmission. Data from vaccinated cattle with inactivated 

vaccines indicates that inducing good immunity to BTV is 

probably sufficient to greatly limit vertical transmission and 

therefore prevent abortions and newborn malformations [71]. It 

would therefore be interesting to evaluate whether these 

experimental vaccines can limit the transmission of BTV strains 

prone to cross the placental barrier. 

 

Conclusion  
 

Even though vertical transmission has long been associated with 

live attenuated BTV vaccine strains, the 2006 BTV-8 outbreak 

in Europe demonstrated that vertical transmission could be a 

feature of some BTV field strains. In utero infection can lead to 

abortions and/or congenital malformations that limit ruminant 

productivity. Moreover, vertical transmission can also contribute 

to the disease overwintering in temperate climates in which 

vector activity is reduced in colder months. As such, this 

transmission route and its consequences on reproduction should 

be monitored during BTV outbreaks. The factors involved in the 

crossing of the placental barrier by the virus remain elusive, and 

thus further work will be necessary to pinpoint these. As often 

seen, vaccination appears to be an effective tool to limit disease 

spreading and to impair the teratogenic effects of BTV. 

Establishing adequate models of BTV vertical transmission will 
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also help in the development of strategies to counter this 

transmission route. Since classic models for screening BTV 

vaccine candidates are unlikely to be useful in protection studies 

against vertical transmission, establishing robust models of 

vertical transmission for BTV will be a necessity. This includes 

the characterization of BTV strains prone to transmission 

through this route as well as precisely defining the experimental 

conditions that favor transplacental barrier crossing. These 

issues are critical to adequately assess vaccine efficacy against 

vertical transmission. Much work remains to be done to fully 

understand BTV capacity to be transmitted vertically and 

produce harm to the developing fetus. 
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