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Abstract  
 

Epigallocatechin 3-gallate (EGCG), an abundant polyphenolic 

component derived from green tea extract, possesses versatile 

bioactivities that can combat many diseases. During the last 

decade, EGCG was shown to be effective in experimental 

models of Parkinson’s disease (PD). Several experimental 

studies have suggested that it has pleiotropic neuroprotective 

effects, which has enhanced the appeal of EGCG as a therapeutic 

strategy in PD. In this review, we compiled recent updates and 

knowledge of the molecular mechanisms underlying the 

neuroprotective effects of EGCG in PD. We focused on the 

effects of EGCG on apoptosis, oxidative stress, inflammation, 

ferroptosis, modulation of dopamine production, and the 

aggregation of α-synuclein. The review highlights the 

pharmacological features of EGCG and its therapeutic 

implications in PD. Taken together, the accumulated data 

indicate that EGCG is a promising neuroprotective compound 

for the treatment of PD. 
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Introduction  
 

Parkinson’s disease (PD) is the second most common 

neurodegenerative disease. It is characterized by motor and non-

motor symptom [1]. The degeneration of dopaminergic neurons 

located in the substantia nigra pars compacta (SNpc) of the 

brainstem [2], which leads to the depletion of striatal dopamine 

levels [3], is the major pathological feature of PD, along with the 

presence of Lewy bodies (LBs), which mainly consist of 

misfolded α-synuclein, ubiquitin, PTEN-induced kinase-1 

(PINK1), parkin, and other proteins, in the surviving neurons 

[4,5]. PD affects more than 2% of the population older than 65 

years old [6], and is becoming a major age-related health 

problem [7-9]. 
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Despite intensive research, the molecular mechanisms involved 

in the degeneration of dopaminergic neurons remains poorly 

understood [10]. Oxidative stress [11,12], mitochondrial 

dysfunction [13], neuroinflammation [14], iron dysregulation 

[15], ferroptosis [16-18], protein misfolding and degradation 

dysfunction [19], and environmental and genetic factors [20] 

probably play an important role in the pathogenesis of PD. The 

available therapeutic options for PD are limited, and only 

provide symptomatic relief, rather than halting the progression of 

the disease, in addition to having serious side effects [2]. 

Increasing numbers of studies have been performed to identify 

neuroprotective compounds that can prevent dopaminergic 

neuron injury, and thereby retard disease progression and add 

further benefits to current therapy [10,21].  

 

In this context, nutraceuticals have gained tremendous interest in 

recent decades, due to their long history of use [22]. Various 

nutraceuticals exhibit antioxidative, anti-inflammatory, and anti-

aging properties, and have been studied in the treatment of PD. 

Phytochemicals are biologically active nutraceutical plant 

chemicals that are typically secondary metabolites present in 

plants, such as green tea polyphenols, anthocyanidins, 

carotenoids, phytoestrogens, and terpenoids [23]. Many 

phytochemicals have emerged as potential multi-target agents for 

the treatment of PD, due to their diverse actions [24].  

 

Several dietary phytochemicals have been investigated in PD due 

to their potential beneficial and neuroprotective effects, 

including green tea catechins, such as epigallocatechin 3-gallate 

(EGCG) [25]. EGCG is an abundant polyphenolic component of 

green tea extract, and has exhibited versatile bioactivities in 

combating several diseases [26,27]. During the last decade, 

EGCG has been shown to be effective in experimental models of 

PD [22]. Mounting evidence from experimental studies has 

suggested that EGCG exerts pleiotropic neuroprotective effects, 

which has led to emergence of EGCG as a therapeutic strategy 

for PD.  

 

We here compiled recent updates on the use, and reports on the 

cellular and molecular mechanisms of neuroprotection of EGCG 
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in PD. In this review, we focused on the effects of EGCG 

apoptosis, oxidation, inflammation, dopamine production, and 

the aggregation of α-synuclein. By highlighting the 

pharmacological features of EGCG and its therapeutic 

implications in PD, this review suggests that EGCG may be a 

promising neuroprotective compound for the treatment of PD. 
 

Source, Biochemistry, and Bioavailability of 

EGCG  
 

Green tea contains six main catechin compounds, i.e., 

gallocatechin, catechin, epicatechin (EC), epicatechin gallate 

(ECG), epigallocatechin (EGC), and EGCG. EGCG is the most 

active component and best-studied polyphenol in green tea. Each 

two hundred and fifty milliliters (1.25% w/v) of green tea 

contains around 177 mg of EGCG [28]. EGCG (C22H18O11) is a 

flavanol catechin, and is an ortho-benzoyl benzopyran 

byproduct, comprised of three hydroxyphenyl and 

hydroxybenzoate moieties marked A, B, C, and D [22] (Figure 

1). The benzopyran ring, which has a phenyl group at C2 and a 

gallate group at C3, is made up of ring A and C. The B ring has 

positional 3,4,5-trihydroxyl groups, and the D ring gallate group 

(a galloyl moiety) is conFigured as an ester at C3. EGCG has 

reactive oxygen species (ROS)-deactivating properties due to the 

contribution of the B and D rings. The D ring has been shown to 

have anticancer and anti-inflammation characteristics [22]. 

EGCG has seven hydroxyl radicals distributed among three 

aromatic rings, which confers water solubility, causing EGCG to 

have high blood-brain barrier (BBB) permeability [22]. It has 

been reported that EGCG permeates the BBB within 0.5 h [29]. 

The BBB permeability of EGCG were decreased by 57.54% 

[29]. Although EGCG has good pharmacological and biological 

activity, the bioavailability of oral EGCG is relatively poor. A 

previous study showed that the highest plasma concentration of 

EGCG was only 0.15 µM after a human ingested two cups of 

green tea [30]. Oral EGCG was not stable in intestinal and blood 

environment, most of EGCG was not absorbed, and its 

bioavailability was reduced. The bioavailability of oral EGCG 

could be significantly improved through structure modification 

or nano-materials dependent protection and delivery [31]. 
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Figure 1: Chemical structure of EGCG. 

 

The medicinal properties of green tea are derived from EGC 

esterification with gallic acid (i.e., galloylation). Thus, green tea 

has antioxidative mechanisms provided by EGCG [22]. The 

unique chemical structure and makeup of EGCG confer its 

highly antioxidative and anti-inflammatory properties. EGCG is 

a peroxynitrite scavenger that reduces the nitration of tyrosine, 

and scavenges hydrogen peroxide and superoxide anions, 

thereby blocking ROS-induced DNA damage.EGCG have 

exhibited many disease-alleviating properties particularly 

regarding   neuroprotective (as evidenced in Figure 2). 
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Figure 2: The different effects of EGCG on the different diseases. 

 

Neuroprotective Properties of EGCG in PD  
 

During the last two decades, studies have increasingly focused 

on the neuroprotective properties of EGCG in PD. In the early 

2000s, the potent neuroprotective effects of EGCG were studied 

in 6-hydroxydopamine (6-OHDA)-induced PC12 cells. These 

studies suggested that EGCG has neuroprotective effects against 

6-OHDA-induced neuronal apoptosis [32]. Since these first 

reports on the neuroprotective effects of EGCG in PD, EGCG 

has received significant attention as a therapeutic agent, due to 

its multiple molecular mechanisms of action in PD. The potential 

neuroprotective effects in the context of PD have been 

thoroughly studied in both in vitro and in vivo models, allowing 

a deeper understanding of the molecular cascades through which 

EGCG exerts its neuroprotective actions on PD (Table 1). 
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Table 1: Neuroprotective effects of EGCG in PD. 

 

EGCG dose Experimental model Effects Signaling Involved mechanism References 

200 µM 6-OHDA/PC12 cell  ↑Cell viability  - - (Jin et al., 2001) 

200 µM,pretreatment 6-OHDA/PC12 cell  ↑Cell viability ;↓ Apoptosis - - (Nie et al., 2002) 

25–200μM 6-OHDA/PC12 cell  ↑Cell viability ;↓ Apoptosis NA Anti-apoptotic  (Nie et al., 2002) 

0.1–10μM,pretreatment 6-OHDA/SH-SY5Y  ↑Cell viability ;↓ Apoptosis ↑pSTAT3 Anti-apoptotic (Wang et al., 2009) 

100μM 6-OHDA/A53T-α-syn SH-

SY5Y cell 

↑Cell viability;↓ Apoptosis;  - Anti-apoptotic (Ma et al., 2010) 

10μM 6-OHDA/SH-SY5Y ↑Cell viability;↓ LDH  ↑Akt - (Chao et al., 2010) 

1-10 mg/kg 6-OHDA/N27 cell ↑Cell viability;↓caspase-3;↓ 

DMT1;↓hepcidin;↑FPN1; 

↓Fe2+; ↑TH+ primary 

mesencephalic neurons 

- Anti-apoptotic (Chen et al., 2015) 

10 mg/kg 6-OHDA/Male Wistar rats  

 

↓Rotational behavior;↑locomotor 

activity;↑antidepressive 

effects;↑cognitive 

dysfunction;↓oxidative stress 

- Antioxidant 

 

(Bitu Pinto et al., 2015) 

100μM 6-OHDA/SK-N-AS 

 

↑Cell viability;↓caspase-3; ↓IL-

1β and TNF-α 

 

-  

 

Anti-apoptotic; 

Anti-inflammatory  

(Özduran et al., 2022) 

1–10μM DDT/SH-SY5Y ↑Cell viability  - - (Tai and Truong, 2010) 

10–30μM  

 

Glutamate/HT22 cell 

 

↓L-DOPA methylation; ↓NF-

kB;↓ROS;  

↓GFAP-immunoreactive 

astrocytes(CA3 region)； 

  

 

Antioxidant 

COMT inhibitor 

(Kang et al., 2010) 

100 mg/kg L-DOPA/rat ↑Striatal dopamine;↓3-OMD 

level 

- COMT inhibiton (Kang et al., 2010) 

30 min before i.c.v. 

injection of kainic acid 

Kainic acid/rat ↓Oxidative stress - Antioxidant;COMT 

inhibitor 

(Kang et al., 2010) 

100μM L-DOPA/PC12 cell   ↑Cell viability;↑GSH   -  

 

Antioxidant 

 

(Lee et al., 2013) 

100μM LPS/Primary Microglia ↓NO release; ↓TNF-α;↓iNOS - Anti-inflammatory  (Li et al., 2004) 

100μM LPS/SH-SY5Y ↑Cell survival   - -  (Li et al., 2004) 

200–400 μM LPS/SD rat ↓NO; ↓TNF-α;↓iNOS;↑Striatal 

dopamine;↑TH+ neurons in 

midbrain 

- - (Al-Amri et al., 2013) 

EGCG-Loaded 

Liposomes 

LPS/BV-2 microglia ↑Cell survival;↓oxidative stress; 

↓NO; ↓TNF-α; 

↓cPLA2;↓COX-2 

- Antioxidant; 

Anti-inflammatory  

(Cheng et al., 2021) 

EGCG-Loaded 

Liposomes 

LPS/SD rat Restored motor impairment;↓NO 

release; ↓TNF-α; ↓IL-1β 

- Anti-inflammatory  (Cheng et al., 2021) 

1.25–10 μM  MPP+/PC12 cell  ↑Cell 

survival;↓ROS;↑SIRT1;↑PGC-

1α, SOD1 and GPX1 

↑SIRT1/PGC-1α Antioxidant (Ye et al., 2012) 

Lep/RES-EGCG- MPP+/SH-SY5Y  ↑Cell survival;↑Bcl-2;↓Bax;↓α- - Anti-apoptotic (Kuo et al., 2021) 
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liposomes 

 

syn;↑TH;↑dopamine 

transporter 

25 mg/kg (p.o.) 

 

MPTP/mice ↑TH-positive cells(SN) ;↑TH 

activity(striatum);↑ 

dopamine(striatum);↑HVA;↓n

NOS (SN) 

- - (Choi et al., 2002) 

50 mg/kg MPTP/mice ↑TH-positive cells in the 

substantia nigra ;↓iNOS  

- - (Kim et al., 2010) 

25 mg/kg, 7 d 

 

MPTP/mice ↓Rotational latency ;↑striatal 

levels of dopamine;↓oxidative 

stress;↑DOPAC;↑ferroportin 

- Antioxidant (Xu et al., 2017) 

25-50 mg/kg/day 

 

MPTP/mice ↓Motor dysfunction;↑TH-

positive cells in the substantia 

nigra ;↓TNF-α; ↓IL-6; 

↑CD3+CD4+ to CD3+CD8+ T 

lymphocytes in the peripheral 

blood 

- Modulating peripheral 

immune response.  

(Zhou et al., 2018) 

1–200 μM  Paraquat/PC12 cell  ↑Cell survival ;↑mitochondrial 

membrane potential;↓ caspase-

3;↓ pro-apoptotic protein Smac 

in cytosol. 

- Anti-apoptotic (Hou et al., 2008) 

0.1-0.5 mM 

 

Paraquat/knock-down parkin 

Drosophila melanogaster 

↑Life span and locomotor 

activity ;↓oxidative stress 

 

- Antioxidant (Bonilla-Ramirez et al., 

2013) 

0.5 mM Paraquat/knock-down parkin 

Drosophila melanogaster 

↑Life-span;↑locomotor activity; 

↓LPO; ↓neurodegeneration 

- Antioxidant (Martinez-Perez et al., 

2018) 

100 or 300 mg/kg i.p. 

 

Rotenone/Male SD rats ↓Motor Impairment;↓NO; 

↓LPO;↑GSH, SOD, and CAT; 

SDH, total ATPase, NADH 

cytochrome C reductase, and 

succinate-cytochrome C 

reductase;↓TNF-α;↓IL-1β; 

↓IL-6;caspase-3  

- Antioxidant 

Anti-apoptotic 

Anti-inflammatory 

(Tseng et al., 2020) 

20 μM - Convert large, mature α-

synuclein and amyloid-β fibrils 

into smaller, amorphous 

protein aggregates 

- Disassembles 

preformed amyloid 

fibrils 

(Bieschke et al., 2010) 

100 nM - ↓α-syn aggregation - - (Xu et al., 2016) 

20 μM - ↓α-syn fibril - - (Jha et al., 2017) 

20 μM α-syn/SH-SY5Y ↑Cell survival ;↓LDH - - (Jha et al., 2017) 

20 μM - ↓α-syn fibril - - (Zhao et al., 2017) 

10 μM α-syn/PC12 ↑Cell survival ;↓ROS  Antioxidant (Zhao et al., 2017) 

10 -70μM α-syn/SH-SY5Y ↓α-syn-mediated cytotoxicity - - (Yang et al., 2017) 

20 mM α-syn transduced-PC12 cells 

 

↑Cell viability; ↓Cu(II) induced 

fibrillation of α-syn; ↓α-syn 

overexpression  

- - (Teng et al., 2019) 
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5–50 μM 

 

- Disaggregates the protofibrils 

and mature γ-syn fibrils into 

similar SDS resistant 

oligomers 

- - (Roy and Bhat, 2019) 

50 μM γ-syn oligomers/SH-SY5Y ↑Cell survival ;↓LDH - - (Roy and Bhat, 2019) 

Molar ratio of EGCG to 

α-syn  

is 2:1 

- Destabilizes α-synuclein 

fibril;disrupts the β-sheet  

structures of α-syn fibril 

 - (Yao et al., 2020) 

EGCG homogenous 

microparticles 30 μM 

 α-syn oligomers/N2A cell Inhibited the amyloidogenic 

aggregation of α-syn cytotoxic 

effects of α-syn 

oligomers;↑Cell 

survival ;↓LDH 

- - (Fernandes et al., 2020) 

0.1-0.5 mM 

 

Drosophila melanogaster with 

PINK1 mutations 

↓Locomotive and neuronal 

defects; remodeling gut 

microbiota 

- - (Xu et al., 2020) 

0.5 mM LRRK2 and parkin-null flies 

 

↑Climbing scores in EGCG-

treated mutant LRRK2 

flies;↓loss of DA neurons 

displayed by Ddc GAL4-

LRRK2 G2019S-expressing 

flies; ↓enlarged mitochondria 

in their DA neurons  

- - (Ng et al., 2012) 

 

↑, indicates upregulation;↓, indicates downregulation; DMT1, divalent metal transporter-1; Fpn1,ferroportin 1; DDT, dichlorodiphenyl-trichloroethane;3-OMD,3-O-

methyldopa; LPS,Lipopolysaccharide; NO, nitric oxide; iNOS,inducible NO synthase;Lep/RES-EGCG-liposomes,leptin-conjugated phosphatidic acid liposomes with 

resveratrol and epigallocatechin gallate; HVA,3,4-dihydroxyphenylacetic acid and homovanillic acid; PINK1,PTEN induced putative kinase 1;TH,tyrosine hydroxylase; 

LPO,lipid peroxidation;SN, substantia nigra; 
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Protection against Apoptosis 
 

Apoptosis is activated via the intrinsic or extrinsic pathways, and 

has been extensively documented in PD [12,33]. Apoptosis has 

been implicated as the main mechanisms of neuronal death in the 

SNpc in PD. Apoptotic cell death has been observed in cell 

culture and animal models of PD, and also in nigrostriatal 

regions of the brains of patients with PD at postmortem [34]. 

Targeting apoptosis is regarded as one strategy for preventing 

dopaminergic neuron death [35,36]. 
 

Jin et al.’s pioneering study showed that preincubation with 

EGCG inhibited 6-OHDA-induced apoptosis in PC12 cells [32], 

which was further corroborated by the same group’s later studies 

[37,38]. After these studies, evidence suggesting that EGCG 

exerts neuroprotective effects against apoptosis in PD has 

accumulated. Levites and colleagues have shown that EGCG 

prevented both 6-OHDA-induced expression of several mRNAs, 

such as Bad, Bax, and Mdm2, and resulted in a decrease in Bcl-

w, Bcl-2, and Bcl-x(L). EGCG exerted neuroprotective effects 

against 6-OHDA caused SH-SY5Y cells toxicity through 

increasing phosphorylated protein kinase C (PKC), suggesting 

that EGCG exert neuroprotective effects against oxidative stress-

induced cell death through activation of PKC and modulation of 

apoptosis [39]. Chan and colleagues have shown that 

pretreatment of SH-SY5Y cells with EGCG at 0.1–10 μM 

significantly attenuated cell death induced by 6-OHDA. EGCG 

(1 μM) prevented 6-OHDA-induced activity decline of STAT3. 

These data clearly demonstrated that EGCG inhibited 6-OHDA-

induced oxidative stress-dependent cell death through re-

stimulation of the STAT3 signaling pathway [40]. EGCG 

inhibited 6-OHDA-induced neurotoxicity in SH-SY5Y cells 

expressing A53T-mutated α-synuclein, by which sensitivity to 6-

OHDA was increased, causing oxidative stress [41]. EGCG 

protected against 6-OHDA-induced neurotoxicity in N27 cells. 

Pretreatment with EGCG prevented the 6-OHDA-induced 

activation of caspase-3 activity [42]. In the 6-OHDA-treated SK-

N-AS cell PD model, EGCG inhibited the upregulation of α-

synuclein, and significantly reduced caspase-3 immunoreactivity 

[43]. A recent study has suggested that leptin-conjugated 

phosphatidic acid liposomes containing EGCG and resveratrol 
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reduced 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis 

in SH-SY5Y cells [44]. EGCG and resveratrol, encapsulated in 

liposomes, could reduce expression of Bax and α-synuclein, and 

increase levels of Bcl-2, tyrosine hydroxylase (TH), and the 

dopamine transporter [44]. EGCG also inhibited apoptosis 

induced by paraquat (PQ) in PC12 cells [45], by inhibiting the 

loss of mitochondrial membrane potential (MMP) as well as 

reducing caspase-3 activity, and by downregulating levels of the 

pro-apoptotic protein Smac in the cytosol [45]. Furthermore, 

EGCG inhibited apoptosis induced by rotenone in vivo [46]. In 

rotenone-challenged rat PD models, EGCG treatment prevented 

most of the rotenone-induced motor dysfunctions. EGCG 

reduced the levels of the apoptotic marker caspase-3 in the 

striatum of these rats [46]. Taken together, EGCG shows 

potential in inhibiting apoptosis in both in vivo and in vitro PD 

models.   
 

Protection against Oxidative Stress  
 

Oxidative stress is one of the main factors in the pathogenesis of 

PD [47,48]. The oxidative stress hypothesis of PD was proposed 

in 1992 [11], and holds that oxidative stress leads to the 

neurodegeneration of dopaminergic neurons, resulting in the 

pathogenesis of PD [49]. Accumulating evidence has suggested a 

number of sources and mechanisms for oxidative stress in PD, 

which include nicotinamide adenine dinucleotide phosphate 

oxidase (NOX) activation, mitochondrial dysfunction, the 

catabolism of dopamine by auto-oxidation, iron (Fe2+) 

accumulation [2]. Oxidative stress causes injury to 

macromolecular components (i.e., DNA, proteins, and lipids) 

[50-54], resulting in cellular dysfunction and, eventually, 

dopaminergic neuron death [2]. Given the important role of 

oxidative stress in PD, antioxidant supplements could be a 

reasonable therapeutic approach to halting PD progression [55], 

as it could mitigate oxidative stress-dependent neuronal injury 

[56].  
 

Ye et al. [57] and Lee et al. [58] highlighted the EGCG-mediated 

decrease in PD-related neurotoxin-induced ROS production in 

their in vitro experiments. Ye et al. showed that EGCG inhibits 

MPP+-induced oxidative stress in PC12 cells via the 
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SIRT1/PGC-1α signaling pathway [57]. Specifically, EGCG 

significantly increased cell viability and decreased MPP+-

induced ROS production, and potentiated MPP+-induced 

upregulation of Sirtuin 1 (SIRT1), peroxisome proliferator-

activated receptor gamma (PPARgamma) coactivator-1α(PGC-

1α), glutathione peroxidase(GPX1), and superoxide dismutase 1 

(SOD1) [57]. Lee et al. demonstrated that EGCG could inhibit L-

3,4-dihydroxyphenylalanine-induced oxidative stress-dependent 

PC12 cell death, which was reflected by a reduction in ROS 

generation and production of thiobarbituric acid reactive 

substances, and by an increased intracellular level of glutathione 

(GSH) [58].  
 

EGCG also plays a neuroprotective role in PD through 

antioxidant mechanisms in vivo PD animal models. In a 1-

methyl-4-phenyl-1,2,3,6 -tetrahydropyridine (MPTP)-induced 

PD model, EGCG rescued MPTP-induced neurotoxicity by 

decreasing serum protein carbonyls, implying that EGCG 

reduced oxidative stress in mice [59]. In agreement with these 

findings, Pinto and colleagues revealed that EGCG reverted 

behavioral changes in 6-OHDA-induced male Wistar rats, which 

were reflected by increased locomotor activity, decreased 

rotational behavior, antidepressive effects, and improvement of 

cognitive dysfunction. EGCG reversed the striatal oxidative 

stress and inhibited immunohistochemistry changes, indicating 

that EGCG likely exerts neuroprotective effects by its powerful 

antioxidant and anti-inflammatory properties [60]. This 

observation was corroborated by other studies, which reported 

that EGCG protects and prevents PQ-induced oxidative stress-

dependent neurodegeneration in Drosophila melanogaster 

[61,62]. Recent evidence has indicated that EGCG reversed 

rotenone-induced neurochemical and motor dysfunctions in rats 

by reducing lipid peroxidation (LPO) and nitric oxide (NO) 

levels [46]. This study substantiated previous indications that 

EGCG had neuroprotective effects in PD by anti-oxidant, anti-

neuroinflammation, and anti-apoptosis activities [46]. Taken 

together, EGCG shows potential in inhibiting neurotoxin-

induced oxidative stress injury in both in vitro and in vivo PD 

models. 

 
 

https://pubmed.ncbi.nlm.nih.gov/?term=Bitu+Pinto+N&cauthor_id=26167188
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Protection against Neuroinflammation  
 

Since McGeer and colleagues observed activated microglial 

infiltration in the SN of the postmortem PD brain, in the early 

1980s [63], numerous studies have focused on the role played by 

neuroinflammation in the pathogenesis of PD. These studies 

have revealed that cytokine-induced inflammatory responses 

play an important role in this disease [64]. Activation of 

astrocytes/microglia and peripheral immune cell infiltration, a 

process called neuroinflammation, are observed in PD [14]. 

Chronic inflammation and neuroinflammation triggers neuronal 

damage and plays a vital role in PD pathology [14,65,69]. 

Mounting evidence has indicated that targeting chronic 

inflammation may be a potential therapeutic target for PD, and 

pharmacologically reducing neuroinflammation via therapeutic 

compounds maybe prevent or delay progression of PD [14,70-

73]. 
 

Remarkably, EGCG exhibits anti-inflammatory activities in 

vitro. Le and colleagues have shown that EGCG potently down-

regulates inducible NO synthase (iNOS) and tumor necrosis 

factor-α (TNF-α) expression, thereby inhibiting 

lipopolysaccharide (LPS)-activated microglial secretion of nitric 

oxide (NO) and TNF-α. In addition, EGCG inhibited neuronal 

injury in SH-SY5Y and in primary rat mesencephalic cultures 

through microglial activation, which suggested that EGCG 

functions as a potent inhibitor of microglial activation, thereby 

alleviating microglia-mediated dopaminergic neuron injury in 

PD [74]. Additionally, EGCG suppresses 6-OHDA-induced 

expression of TNF-α and IL-1β in SK-N-AS cells, thereby 

inhibiting apoptotic pathways and enhancing survival [43]. 
 

Recently, several in vivo findings have provided evidence for 

possible anti-inflammatory effects of EGCG in PD. Al-Amri et 

al. reported that pretreatment with EGCG decreased TNF-α and 

NO, and markedly increased the number and density of TH-

immunoreactive neurons in the midbrain of PD model rats [75]. 

Likewise, EGCG reduced the rotenone-induced increase in NO 

levels in the striatum and reduced the levels of 

neuroinflammatory markers of model rats [46]. Interestingly, 

recent data have demonstrated that EGCG-loaded liposomes 
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decreased the production of NO and TNF-α in LPS-induced BV-

2 microglia, attenuated LPS-induced pro-inflammatory cytokine 

levels, and restored motor impairment in vivo in a PD rat model, 

suggesting that EGCG exerts a neuroprotective effect by 

modulating microglial activation [76].    
 

Collectively, these data indicate that EGCG maybe play a 

neuroprotective role by inhibiting neuroinflammation in both in 

vivo and in vitro PD models. 
 

Protection against Ferroptosis  
 

Recent studies have suggested that EGCG may regulate 

ferroptosis, which is an iron-dependent regulated cell death 

pathway involving a lethal accumulation of lipid peroxides that 

is triggered by a combination of iron toxicity, LPO, and plasma 

membrane damage [77-79] (Figure 3). Ferroptosis, characterised 

by iron-dependent LPO, shares several features with PD 

pathophysiology. Interestingly, several major pathological 

hallmarks of PD are known key features and/or triggers in the 

ferroptosis pathway [17]. These include iron overload [80], 

increased LPO [81,82], SLC7A11 downregulation [83], DJ-1 

depletion [84], GSH level reduction [85,86], and CoQ10 level 

reduction [87,88]. Increasingly, studies have revealed that α-

synuclein regulates both iron and lipid metabolism, suggesting a 

possible interplay between ferroptosis and dysregulated α-

synuclein [89]. Taken together, these studies strongly implicate 

ferroptosis in the neurodegeneration observed in PD. 
 

Reddy and coworkers have shown that EGCG can affect brain 

iron homeostasis in 6-OHDA-induced N27 cells [42]. EGCG 

pretreatment counteracted 6-OHDA-induced increased 

expression of divalent metal transporter-1 (DMT1) and hepcidin 

and decreased expression of the iron-export protein ferroportin 1 

(Fpn1), leading to a 28% reduction in Fe2+ uptake. Pretreatment 

with EGCG prevented the 6-OHDA-induced activation of 

caspase-3 activity, indicating that EGCG inhibits 6-OHDA-

induced neurotoxicity by regulating iron homeostasis [42]. This 

observation was corroborated by other studies, which showed 

that EGCG upregulated Fpn1 in the SN and reduced oxidative 

stress, thereby exerting a neuroprotective effect against MPTP-

induced neurotoxicity in mice [59]. However, the study by Lee et 

https://pubmed.ncbi.nlm.nih.gov/?sort=date&size=200&term=Reddy+MB&cauthor_id=26770869
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al. demonstrated that EGCG increased intracellular levels of 

GSH in a PD model [58]. Recent evidence indicated that EGCG 

reversed rotenone-induced lipid peroxidation (LPO) production 

[46], which substantiate previous indications showing that 

EGCG treatment provided protection and prevention from the 

PQ-induced increase in LPO and neurodegeneration in dj-1-β-

knockdown Drosophila melanogaster [62]. 
 

 
 

Figure 3: Mechanism of ferroptosis. 
 

In summary, these studies suggested that EGCG inhibits iron 

overload, decreased LPO, and increased GSH levels in PD 

models, which are the three major hallmarks of ferroptosis. 

However, further research is needed to strengthen this hypothesis 

and provide more detailed mechanisms underlining EGCG 

inhibition of ferroptosis, such as whether EGCG regulates the 

ferroptosis signaling pathway and ferroptosis regulators. 
 

Modulation of Dopamine Production  
 

PD is a neurodegenerative disease caused by the death of 

dopaminergic neurons located in the SNpc of the brainstem, 

resulting in the depletion of striatal dopamine, an important 
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neurotransmitter in the brain [3]. Loss of more than 80% of the 

dopaminergic neurons in the SNpc affects the nigrostriatal 

circuits in the midbrain, leading to typical PD motor symptoms, 

which include tremor at rest, rigidity, slowness or absence of 

voluntary movement, postural instability, and freezing [90,91]. 

The recovery of striatal DA content is an important target in PD 

treatment. Therefore, dopamine replacement therapy, 

compensating for the lack of dopamine, is the classic treatment 

for motor symptoms of PD [92].  
 

A previous study revealed that EGCG (400 mg/kg) protected 

against MPTP-induced functional and neurochemical deficits, 

resulting in increased striatal dopamine concentrations in an 

MPTP-induced PD model in male C57 black mice [59]. A single 

intraperitoneal injection of LPS (15 mg/kg) resulted in a 

decrease in dopamine levels and reduced the number and the 

density of TH-positive neurons in the midbrain in male Sprague–

Dawley rats. Pretreatment with EGCG (10 mg/kg) preserved the 

number of TH-positive neurons and increased dopamine levels, 

indicating that EGCG protected against LPS-induced 

neurotoxicity by reducing inflammatory mediators and 

preserving dopamine levels in the midbrain [75].  
 

Two important enzymes, monoamine oxidase (MAO) and 

catechol-O-methyl transferase (COMT), are needed for the 

catabolism of dopamine, through which dopamine is changed to 

its inactive metabolites [91]. MAO first converts dopamine to 

3,4-dihydroxyphenylacetaldehyde (DOPAL). Aldehyde 

dehydrogenase then converts DOPAL to 3,4-

dihydroxyphenylacetic acid (DOPAC). In the COMT pathway, 

dopamine is converted to 3-methoxytyramine, which is further 

reduced to homovanillic acid (HVA), which is subsequently 

eliminated via the urine [91]. In the MPTP-induced PD murine 

model, EGCG inhibits the loss of TH-positive cells located in the 

SN and the reduction of TH activity in the striatum. At the same 

time, EGCG preserves dopamine and its metabolites, DOPAC 

and HVA, in the striatum [93].  
 

Modulation of α-Synuclein  
 

The pathological hallmarks of PD are the presence of LBs in 

different brain regions, which are primarily composed of 
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misfolded and aggregated α-synuclein [94]. Increasing evidence 

has indicated that α-synuclein plays a pivotal role in PD 

pathogenesis. It has been reported that α-synuclein aggregation is 

one of the leading causes for dopaminergic neuron dysfunction 

and death [95]. The multifactorial events involved in this process 

includes increased oxidative stress, inflammation, mitochondrial 

dysfunction, and ubiquitin-proteasome system (UPS) 

dysfunction, which lead to the accumulation of abnormal or 

misfolded α-synuclein [96]. These aggregates undergo several 

key stages of oligomerization, fibrillation, and aggregation. 

Recent studies have proposed that α-synuclein aggregates can 

disrupt synaptic regulation, impair neuronal signaling, and 

eventually lead to neuronal death [97,98]. The α-synuclein 

oligomers induce mitochondrial dysfunction and cause 

neuroinflammation, oxidative stress, endoplasmic reticulum 

stress, and inhibition of proteasomal activity and autophagy 

[96,99]. An imbalance in the homeostasis of α-synuclein might 

result in accumulation of α-synuclein and aggregation. The α-

synuclein oligomer hypothesis of PD for dopaminergic neuron 

cell death holds that α-synuclein forms transiently unstable 

oligomers, which exert cytotoxic effects and are eventually 

converted to thermodynamically more stable amyloid fibrils 

[100]. 
 

EGCG inhibits α-synuclein fibrillogenesis in cell-free assays 

[101]. After this was published, many studies investigated 

whether EGCG has the ability to remodel α-synuclein aggregates 

in cell-based models, and found that EGCG could reduce α-

synuclein fibril-induced cytotoxicity by remodeling the α-

synuclein structure [101]. EGCG binds to α-synuclein amyloid 

fibrils and oligomers, thereby directly altering their morphology. 

It as shown that EGCG directly binds to β-sheet-rich aggregates, 

mediating a conformational change without disassembling them 

into small diffusible oligomers or monomers [101]. 

Subsequently, it was shown that EGCG can robustly 

disaggregate pre-formed oligomers and dose-dependently inhibit 

α-synuclein aggregation [102]. Another study revealed that 

EGCG can reduce the ability of oligomers to bind to membranes, 

in addition to affecting oligomer size distribution or secondary 

structure, to prevent cytotoxicity [103]. 
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Jha and coworkers have shown that high dose EGCG decreased 

fibrillization kinetics, and concentration-dependently reduced the 

toxicity of α-synuclein aggregates. EGCG induced nontoxic 

aggregates to form smaller sized fibrils, indicating that EGCG 

may decrease α-synuclein aggregate-induced cytotoxicity by its 

ability to reduce the exposure of a hydrophobic surface [104].  
 

Taken together, these studies suggested that EGCG have the 

poteential to  protect against α-synuclein-induced cytotoxicity by 

modulating the α-synuclein aggregation pathway toward 

formation of nontoxic aggregates. Moreover, EGCG ameliorates 

cytotoxicity induced by α-synuclein oligomers, possibly by 

reducing the extent of toxic aggregate-induced cell membrane 

permeabilization. 
 

Future Prospective and Challenges 
 

There are still some challenges on EGCG new drug development 

regarding to PD. The first challenge is that the stability of EGCG 

is poor, the absorption rate is low, the bioavailability of oral 

EGCG was relatively poor needs to be improved [31]. Another 

challenge is BBB penetration property of EGCG [26]. 
 

However, some authors have suggested new techniques to 

improve the bioavailability of EGCG, such as nanoparticle-based 

delivery systems, structurally modified molecules of catechins, 

or co-administration with other drugs or bioactive compounds 

[25,105]. Simultaneously, the precise molecular mechanism 

underlying the action of EGCG is not fully understood. The 

detailed cell signaling pathway through which EGCG exerts its 

neuroprotective effects require further investigation. Mechanistic 

research that can help to define the function of EGCG could 

provide further benefits for human health. To date, reliable 

clinical data describing the neuroprotective effects of EGCG for 

the treatment of PD are lacking. However, the beneficial effect 

of EGCG in PD still needs to be confirmed in larger animals or 

even in humans before they are applied in clinical settings. 

Hence, these aspects of EGCG need to be studied in future, and 

clinical trials on its efficacy and safety should be 

performed.EGCG remains a potential and promising therapeutic 

strategy in the battle against PD. 
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Conclusion  
 

In conclusion, we here summarized the neuroprotective roles of 

EGCG shown in both in vitro and in vivo PD models. The 

studies summarized in this review clearly revealed that EGCG 

may have the potential to be a novel drug for the treatment of 

PD, to prevent neurodegeneration due to its multi-targeted 

actions.The published research suggests that the molecular 

mechanisms by which EGCG exerts neuroprotective benefits 

include inhibition of apoptosis, oxidative stress, inflammation, 

and ferroptosis, modulation of dopamine production, and the 

aggregation of α-synuclein (Figure 4).  
 

 
 

Figure 4: Schematic illustration of neuroprotective effects of EGCG in PD. 

EGCG can attenuate α-synuclein aggregation, oligomerization, and fibrillation. 

EGCG can also inhibit protein misfolding, oxidative stress, neuronal apoptosis, 

and neuroinflammatory responses. 
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