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Abstract  
 
Single-cell approaches are a major revolution in biology. With 
this technology, it becomes possible to sequence a tumor's 
transcriptome and dissect tumor heterogeneity. Studying the 
interaction between heterogeneous cancer and immune cells 
beyond population averages becomes accessible. This approach 
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is promising to improve immuno-oncology treatments for 
patients. To exploit its full potential, biologists need to 
understand the steps needed to perform these experiments, the 
main scRNA-seq analysis pipeline components, and the 
frequently used tools available in the literature for further 
computational downstream analysis and interpretation.  
Throughout the chapter, we will guide the reader to several 
available libraries and packages that can be used to perform 
these analyses. Inference of intercellular communication will be 
further explored in the context of immuno-oncology at the end of 
the chapter. 
 

Introduction  
 
Since the birth of DNA sequencing, first performed by Fred 
Sanger and his group in 1977, sequencing technologies have 
been revolutionized several times [1]. The first technology 
(Sanger sequencing) uses the chain termination method, which 
generates DNA fragments that elongate at different points using 
dye-dideoxynucleotides. Electrophoresis is employed to separate 
DNA based on size. A laser scanner will provide an 
electropherogram, from which we can read the DNA sequence. 
This technique was widely used, and it remains frequently used 
nowadays. However, this method has some limitations. Indeed, it 
can only sequence short pieces of DNA (300 to 1000 bp), and 
the sequence quality degrades after 700 to 900 bases. Moreover, 
it has major limitations in cost and time. The second generation 
of sequencing, called “Next Generation Sequencing (NGS) 
Technologies” appeared at the beginning of the 2000s. With 
these new sequencers, it became possible to generate millions of 
short reads in parallel; sequencing was quicker than the Sanger 
method, could be achieved at a lower cost, and could be 
performed on smaller quantities of DNA. NGS opened new 
opportunities to decipher the genomes and to study the 
transcriptomes, which had up to then been studied using array-
based technologies, limiting the quantification of transcripts only 
based on specific sequence probes distributed along the genome. 
Even the NGS technologies have some limitations: it is 
necessary to prepare amplified sequencing libraries before 
sequencing amplified DNA clones, with these steps being time-
consuming and amplification libraries being expensive. 
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Moreover, there are still unresolved issues in sequencing 
complex genomes with many repetitive regions, due to the 
difficulty of assembling short reads. For these reasons, new 
sequencers came to the market with a new technology that aimed 
to further reduce the price of sequencing, and simplify the library 
preparation. These sequencers employ Single Molecule 
Sequencing Technology [2]. A few years ago, single-cell 
technologies slowly emerged [1], making it possible to sequence 
the transcriptome at the single-cell level and allowing us to study 
tissues in unprecedented detail. Tissue heterogeneity, detection 
of rare subpopulations, trajectory inference, gene regulatory 
network inference, and cell-cell communication inference are 
examples of what we can do with this technology [3].  
 

Cancer involves uncontrolled proliferation of specific cells but it 
has become apparent that this process involves a complex 
ecological system of interacting cells. The tumor is composed of 
several cell types including normal cells, fibroblasts, immune 
cells, endothelial cells, adipocytes, and cancer cells, which 
interact in a surrounding environment rich in signaling 
molecules, and the extracellular matrix. During oncogenesis, 
cells are fed by the blood vessels, which give them the necessary 
nutrients for their growth. Intercellular communication has a 
fundamental role in homeostasis and also in cancer. This 
communication allows the recruitment and modulation of the 
stromal and immune cells, cell fate decisions, proliferation, and 
migration. This crosstalk inside the tumor and in the surrounding 
environment will promote angiogenesis, immune-escape, pre-
metastatic niche formation, metastasis, and drug resistance [4,5]. 
Cell-cell communication (CCC) can occur either through direct 
cell interactions, mediated by gap junctions, cell adhesion, and 
intercellular bridges (tunnel nanotubes), or indirectly via the 
release of soluble factors, such as cytokines, growth factors, and 
chemokines. Extracellular vesicles are an important mode of 
communication between cancer cells and the tumor 
microenvironment (TME). The immune cells in the TME are 
abundant, varied in types, phenotypes, and states (CD4 and CD8 
T lymphocytes, naive T lymphocytes, B lymphocytes, 
macrophages, NK cells, etc.). In fact, it was observed that tumor-
infiltrating lymphocytes are tightly related to tumor growth and 
patient prognosis [6–9].  
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Tumor heterogeneity and the composition of its 
microenvironment are major causes of treatment failure and 
cancer resistance. For example, immune checkpoint blockers 
only work in at most 30% of the patients (and very often much 
less), and understanding how to predict patients’ responses has 
become a real priority [10]. Relapse can be explained by the 
acquired resistance mechanisms present in the subclones, which 
have self-renewing characteristics. They will stay quiescent until 
the selective pressure of treatment or immune response is gone.  
 

Descriptions of the TME have therefore become essential, and 
they can be obtained by either bulk technologies combined with 
deconvolution approaches or, more recently, by applying single-
cell approaches. Single-cell technology allows us to study tumor 
heterogeneity, as well as cell-cell communication involving all 
the cells in the TME.  
 

Single-cell sequencing technologies provide a large amount of 
data and require bioinformatic skills and knowledge to design 
scRNA-seq experiments and analyze them appropriately. The 
raw data produced are not exploitable immediately and need to 
be pre-processed before being used to address biological 
questions. This chapter will give an overview of different aspects 
of computational analysis of single-cell RNA-seq datasets. We 
will describe the different steps from designing scRNA-seq 
experiments to pre-processing and analysis of the data, 
mentioning which tools are available for the different steps of the 
analysis. The list of methods and tools will not be exhaustive, as 
this is a field in constant expansion and new ones are frequently 
produced, but we hope this chapter will serve as a helpful 
introduction to the topic and allow interested researchers to 
identify more complete resources to acquire deeper knowledge 
or more detailed information. 
 

Designing Single-Cell Experiments and Choosing the 
Best Single-Cell Technologies  
	

Before performing single-cell sequencing, it is necessary to 
carefully design the experiment in a way that will ensure that 
data analysis will generate robust and trustworthy results. This 
part is crucial to reduce the technical noise and to objectively 
measure the biological effect that we want to study.  
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Firstly, it is important to make a clear plan considering the 
following points: 
 
• The project's goal  
• The biological question and its hypothesis  
• The budget and time allocated to the project 
• The tissue under study  
• The number of samples, replicates, and cells that we expect 

to consider in our experiment 
• Whether we are interested in studying gene expression, 

alternative splicing, or also in identifying rare cell 
subpopulations  

 

Secondly, it is important to choose the right technology to 
answer the biological question, and sometimes, this can be 
difficult because several technologies have been developed 
(table 1). Currently, two main technologies are used in scRNA-
seq: plate-based and droplet-based.  
 
• For the plate-based, fluorescence-activated cell sorting 

(FACS) is necessary to deposit one cell in each well (plate 
96 or 384) containing a hypotonic lysis buffer Triton-X100 
where mRNA is separated [11]. After that, cell barcodes are 
added to each well, and libraries are made. The major 
advantage of these methods is that they can sequence full-
length transcripts, so they can be used to study structural 
variations such as RNA fusion, mutations in transcripts, and 
detection of pseudogenes and splice variants at the single-
cell level [12]. Smart-seq techniques are the most used plate 
based method. 

• Droplet-based methods use microfluidics which allows the 
fabrication of devices with microchannels handling very 
small quantities of liquid in micro volumes. In scRNA-seq, 
isolated cells encapsulate both barcode-containing 
beads/hydrogels, and unique molecular identifiers (UMIs), 
such that after pooling, and sequencing, each read can be 
mapped back to its cell of origin. Drop-seq and Chromium 
by 10X are examples of these methods.  

 
Several studies compared the two technologies and showed that 
plate-based methods allow more detection of genes per cell if we 
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compare them with the droplet method. But these last methods 
quantified mRNA levels with less amplification noise due to the 
use of UMI [13]. In addition, Chromium detects more cell 
clusters than Smart-seq2, which on the other side detects more 
genes than Chromium [14]. A comparison of droplet methods 
like Chromium and drop-seq showed that Chromium has higher 
molecular sensitivity, and precision, and less technical noise 
[15]. 
 
In conclusion, plate-based methods must be considered if the 
main aim is to identify rare cell subpopulations or structural 
variation. On the contrary, if the goal is to study the 
heterogeneity of the tissue, Chromium is adequate. 
 
Thirdly, we can start designing the experiment to ensure that we 
reduce the technical noise, which could have several origins, also 
depending on the single-cell technology used (batch effect, 
amplification bias, dropout, etc). This noise can confound 
downstream analysis and can be dealt with using two 
approaches: 
 

• If we do a balanced design, samples, and replicates are 
sequenced in the same lanes on the flow cell (same 
conditions). Thus, it becomes possible to compare them and 
to be sure of the origin of the variation [16,17]. However, it 
is not always possible to do a balanced design, and in some 
cases, we do not have the choice to do a confounded design.  

• In a confounded design, the samples and replicates are 
separated from the others (different lanes and flow cells), 
thus when we compare the measure between them, it 
becomes difficult to identify the source of the biological 
variation. In this case, several statistical methods exist to 
correct batch effects. 
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Table 1: the different single-cell technologies. 
 

Technology Isolation Capacity (# of cells) Coverage UMI or 
spike-in 

Advantages Disadvantages Year Reference 

Smart-seq FACS 96 plates or 384 plates Full-length spike-in   2012 [18] 
Smart-seq2 FACS 96 plates or 384 plates Full-length spike-in ● detect more genes 

● alternative splicing 
● capture a high 

proportion of 
mitochondrial genes 

● cost 

2013 [11,19] 

Drop-seq FACS  3’ UMI ● most cost-effective  
● customizable 

 2015 [20] 

Chromium Droplet-based 1,000-10,000 cells 3’ or 5’ UMI ● cost ● Higher noise for mRNA 
with low expression 
levels 

● dropout problem  

2016 [21] 



Immunology and Cancer Biology 

8                                                                                www.videleaf.com 

Data Analysis Pipeline Overview  
 
Once the sequencing has been performed, a thorough data 
analysis will be key to extract biological information. This 
analysis will be divided into 3 steps (figure 1). The two first 
steps are common, and the third depends on the analysis goals 
defined in the experimental design.  
 
• Step 1: pre-processing. In this stage, the sequence quality 

needs to be checked, and if it is not good, the sequences need 
to be trimmed. After that, the sequences will be aligned with 
the genome reference; if the mapping score is good, the 
analysis will follow step 2. 

• Step 2: main analysis. This step is crucially dependent on 
the experimental design and can be divided into several 
subsets. For example, if it is a balanced or confounded 
design, it is necessary to correct the batch effects. The final 
result will be biased if an appropriate statistical method is 
not applied. This stage will close by the clustering, revealing 
the different subpopulations in the tissue/tumor. 

• Step 3: can be denoted as functional analysis, depending on 
the biological question. It involves studying expression 
profiles at the gene or cell level. At the gene level, it is 
possible to study differential gene expression in different 
conditions (treated or not, for example) or use various tools 
for inferring the gene regulatory networks and identify 
pathways that are differentially enriched (through functional 
enrichment analysis). The trajectory inference (or pseudo-
time) and the cell-cell interaction inference are examples of 
common analysis at the cell level. 

	
In the following, we will provide an overview of different 
software frequently used for carrying out these steps.  
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Figure 1: the different steps of single-cell analysis. 
 

Pre-Processing  
Raw Quality Check & Trimming  
 

As for bulk RNA-seq, the scRNA-seq analysis starts by checking 
the quality of the raw sequences. Several phenomena, like 
sequencing errors, PCR artifacts, and contaminations, can 
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degrade the final sequencing result during the wet lab part and 
sequencing. To detect them, tools will check the presence of 
adaptors, the GC content, duplicated reads, and overrepresented 
k-mers (explained in the mapping and quality check paragraph). 
It is well known that the sequencing quality decreases at the 3’ 
end of the reads. Thus, these bases must be removed to improve 
the mappability. FastQC is the most used tool for this part, and it 
computes some statistics about the composition and quality of 
raw sequences [22]. These statistics include the following:  
	

- Summary statistics 
- Distribution of per-base sequence quality 
- Distribution of quality scores per sequence 
- Distribution of per-base N content 
- Sequence length distribution 
- Sequence duplication 
- Distribution of overrepresented sequences 
	

With an automated pipeline, it will become easy to run FASTQC 
on a large number of samples. But, the FASTQC reports are not 
easy to compare between them. With MultiQC, it becomes easier 
to compare the FASTQC reports and interpret them [23]. 
Moreover, MultiQC will generate an HTML file report. Several 
tools, such as Trimmomatic [24] and Cutadapt [25], exist to 
discard the low-quality reads, trim adaptor sequences, and detect 
contamination, and poor-quality bases. 
 

Mapping and Quality Check  
 

After doing the raw quality check and adaptor trimming, 
mapping is the next step. By definition, read mapping assigns 
each read to a specific location in the genome. As explained in 
the different single-cell technologies, in Chromium and droplet 
technology, we have three important objects, (i) a cDNA 
fragment that identifies an RNA transcript, (ii) a cell barcode for 
each cell, and (iii) a unique molecular identifier (UMI). Mapping 
of reads includes four steps:  

 

• Aligning the reads to a reference genome 
• Assigning reads to genes 
• Cell barcode demultiplexing (allocate each read to a specific 

cell) 
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• UMI deduplication (count the number of unique RNA 
molecules) 

	

These four steps will produce a cell expression matrix, which 
contains the counts of RNA molecules in each cell for each gene. 
Several tools have been developed for bulk and single cell RNA-
seq. Thus, it is not easy to choose a good aligner for the analysis, 
and benchmarking studies could be helpful. Here, we will 
present the main read mapping software used in scRNA-seq, 
which could be useful in immuno-oncology projects.  
 

Two main approaches exist for alignment. The first tools use 
splice-aware aligner algorithms. Genes in the human genome 
contain a lot of introns, and coding sequences are short. Thus, it 
becomes difficult to properly align reads to the genome. For 
example, reads can be mapped entirely within an exon or can be 
spanning two or more exons [26–28]. To overcome this 
difficulty, splice-aware aligners have been developed. They used 
the annotation file (GFF/GTF). In this way, STAR can detect the 
splice junctions and correctly map the read to the reference 
genome. HISAT2 [29], STARsolo [30], and CellRanger (10X 
read mapping software) are the most used splice-aware 
alignment tools in scRNA-seq.  
 

The other methods are based on pseudo-alignment algorithms, 
which include four steps. Firstly, the reference transcriptome will 
be split into k-mers, and a De Bruijn graph will be constructed. 
k-mers are unique length k subsequences of a sequence. A De 
Bruijn graph is a directed graph in which vertices are k-mers, and 
edges represent overlaps between the k-mers. Through the graph, 
a path represents a sequence [31]. Secondly, the RNA-seq reads 
will be converted into k-mers. Thirdly, the software will use the 
k-mers to assign reads to a transcript or several transcripts. 
Finally, the reads will be counted for each transcript or for each 
gene. In single-cell two common tools use pseudo-alignment 
strategy: kallisto/BUStools [32] and Salmon/Alevin/Alevin-fry 
[33].  
 

In bulk RNA-seq, STAR is one of the top-performing read 
mapping tools [26,34]. When 10X developed their technology, 
they also wrote a read mapping software derived from STAR, 
CellRanger, which is one of the most used software in the 
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literature. This software uses STAR to perform the alignment 
while the transcript quantification part is done by the 10X 
proprietary algorithms. Alexander Dobin, the STAR’s developer, 
decided to develop an extension of STAR, called STARsolo. 
CellRanger and STARsolo produce similar results [30]. Unlike 
CellRanger, STARSolo can take into account multi-gene reads 
(transcripts that align well to two or more genes), which is 
important to detect different classes of biologically important 
genes (e.g. paralogs) [30]. As written above, STARSolo uses the 
annotation file to recognize the splice junctions and to detect the 
spliced/unspliced transcripts. This information is important to 
perform RNA velocity studies to reconstruct pseudo-temporal 
trajectories of cell phenotypes starting from a cell mixture. 
STAR showed a better alignment rate and measured more 
abundance of the gene compared to Kallisto/BUStools [34]. By 
comparing 10x PBMC 3K data clustering results (annotation of 
cell types), the pipeline which used STAR and Kallisto annotated 
the same cell types but one cell type was lacking with Kallisto 
[34]. Kallisto has the advantage of being 4 times faster than 
STARSolo and the memory usage is 7.7 times less than the 
previous one [34].  
 

Alignment files (bam) can contain biases, which are introduced 
during sequencing, sample preparation, and/or mapping 
algorithm. Thus, checking the quality of the read alignment is an 
important step. Thus, we will have an idea about the read 
alignment to the human genome and if the data fit with the 
expected outcome. The percentage of reads mapped to the 
reference genome (human) is a global indicator of the overall 
sequencing accuracy. A percentage above 90% in all samples 
indicates a very good mapping rate. Usually, we expect between 
70 and 90% of reads mapped on the human genome. We also 
expect a small fraction of reads to map to multiple regions in the 
genome (multi-mapping reads). After these first read mapping 
quality statistics, we check to see where the reads are mapped. 
We expect more than 60% of reads in the exonic regions and 
between 20-30% in the intronic regions. If an equal distribution 
of reads mapping to intronic, exonic, and intergenic regions is 
present, this could be a sign of DNA contamination since mRNA 
from introns is normally quickly degraded. 
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Table 2: the different mapper frequently used in single-cell analysis. 
 

Aligner Strategy Advantage Disadvantage References 
STARsolo Splice-aware Precise Slow [30] 
HISAT2 Splice-aware Fast  [29] 
CellRanger Splice-aware User-friendly Proprietary software No publication 
Kallisto/BUStools Pseudoalignment Fast  [32] 
Salmon/Alevin/Ale
vin-fry 

Pseudoalignment Fast  [33] 
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Main Analysis  
Cell Quality Check  
	
After ensuring that mapping quality is good, it is important to 
remove low-quality cells which can bias the analysis. In single-
cell data, some metrics are used for quality control: 
 
- the number of UMIs per cell, which represents the number of 

transcripts per cell 
- the number of features, which represents the number of 

detected genes per cell 
- the mitochondrial ratio, giving the percentage of reads 

coming from mitochondrial genes per cell (representing the 
living status of the cell) 

 
In the literature, researchers use thresholds to filter the low-
quality cells. The number of UMIs should be above 500 to have 
enough transcripts per cell and at least 250 genes must be 
detected per cell.  
 
Traditionally, we see a high mitochondrial ratio in low UMIs and 
a low number of genes in cells, showing dying/damaged cells. A 
threshold <0.2 for this ratio is used to remove top damaged cells 
(except if high mitochondrial gene expression is expected in the 
experiment). 
 
This first step of quality control was for cells, but more quality 
checks must be performed at the gene level. For example, we can 
remove genes that are expressed in less than 10 cells. This way 
we will keep living cells and expressed genes. Some literature is 
available to understand these thresholds [35,36]. Some data-
driven methods exist to avoid choosing thresholds as they are 
often arbitrarily chosen [38]. Some code in R is available to be 
guided through the steps of quality control for single-cell 
experiments [1].  
 
A possible additional step for quality control would be to remove 
doublets from the experiment. Technically, doublets are 
generated when two cells merge due to errors in cell sorting or 
capture, more often in droplet-based experiments. A benchmark 
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for doublet detection was performed identifying DoubletFinder 
as the best in detection accuracy and also in computational 
efficiency (memory usage+time) [38].  
 
Normalization  
 
As written in the introduction, the experimental design and the 
sequencing can generate several technical biases. The variability 
in sequencing depth might be increased by technical factors like 
sequencing depth, amplification, gene length, and GC content. 
But they are not the only source of unwanted variation. The 
amount of RNA per cell can vary between cell cycle stages 
[39,40]. Hence, it becomes difficult to untangle the biological 
differences from the technical ones between samples. The goal 
of the normalization is to eliminate/reduce these technical biases 
so that we can preserve the biological signal in our 
transcriptomic data. Bulk RNA-seq developed normalization 
methods. However, these methods are not suitable for single cell 
transcriptomics. Indeed, scRNA-seq generates abundant zero-
expression values [41]. If bulk normalization methods are used 
in scRNA-seq, it may be a source of overcorrection for lowly 
expressed genes [42,43]. To avoid this problem, specific 
normalization methods for scRNA-seq have been developed. 
They are based on the scRNA-seq technologies that have been 
developed: plate based which uses spike-ins and droplet 
technology which uses UMIs. Using a technology that uses UMI 
can reduce technical biases.  

 
scRNA-seq normalization methods are divided into two steps: 
scaling and transformation. The aim of scaling is to apply a size 
factor to scale data. In other words, all counts for each cell are 
divided by a cell-specific factor. The main hypothesis is that the 
bias affects all genes equally with the expected mean count for 
that cell. By dividing the counts by the size factor, we can 
remove the bias. To conclude, the size factor for each cell 
represents the estimate of the relative bias [44]. Then, the 
number of counts becomes comparable across cells and is less 
related to technical variation. The goal of transformation is to 
reduce the skewness in the distribution of the normalized values. 
Log transformation is often used for this step.  
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The first method of normalization is LogNorm which is the 
default method in the Seurat package for scRNA-seq analysis 
[45]. The idea of this method is to measure the gene expression 
for each cell is normalized over the total expression. Thus, we 
can eliminate the effect of the sequencing depth variation 
between cells. Firstly, we compute the normalized gene 
expression value (xi) of gene X in cell i (Eq. 1). The 
transformation is performed by the log (Eq. 2). scRNAseq has a 
lot of zero-expression data values and to avoid zero counts, in 
Eq. 2, we add 1.  
  
𝑥! =	

"#$	&$'(	)*+,-	*.	/$,$	0	!,	)$11	!
"*-'1	*.	)*+,-2	*.	)$11	!

× 103                      (Eq. 1) 
 
𝑓(𝑥!) 	= 	𝑙𝑛(𝑥! + 1)       (Eq. 2) 
 
The LogNorm method is a global scale factor because it is 
applied on all genes. However, if this is not the case, these 
methods may fail to detect true differential expressed genes. 
Genes with weak to moderate expression tend to get 
overcorrected, while genes with high expression get 
undercorrected. To avoid this problem, two other methods have 
been developed.   
 
SCnorm is a method [46] that uses quantile regression to 
estimate the dependence of transcript expression on sequencing 
depth for every gene. Genes with similar dependence are then 
grouped, and a second quantile regression is used to estimate 
scale factors within each group. Within-group adjustment for 
sequencing depth is then performed using the estimated scale 
factors to provide normalized estimates of expression. However, 
this method has a major problem. As written above scRNA-seq 
has a lot of zero-expression values and this issue is not taken into 
account by this method.  
 
As for LogNorm, sctransform is a method developed in the 
Seurat package [47]. The authors proposed a novel statistical 
approach for the modeling, normalization, and variance 
stabilization of UMI count data for scRNA-seq. They observed a 
linear relationship between UMI counts and the number of genes 
detected in a cell. They showed that different groups of genes 
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cannot be normalized by the same constant factor, representing 
an intrinsic challenge for scaling-factor-based normalization 
schemes, regardless of how the factors themselves are calculated. 
This method has three steps. Firstly, sctransform fits a 
generalized linear model (GLM) for each gene with UMI counts 
as the response variable and sequencing depth as the explanatory 
variable. This model describes the influence of technical noise 
on UMI counts. Secondly, sctransform uses the model parameter 
values and gene mean to learn global trends in the data. Thus, it 
is possible to perform independent regularizations for all 
parameters. Thirdly, the regularized regression parameters are 
used to define an affine function that transforms UMI counts into 
Pearson residuals. These residuals will inform us on how much 
the count is far from the true mean expression.  
 
Batch Effect Correction & Integration 
 

Very often people confuse normalization, batch effect, and data 
integration. These notions are different steps of pre-processing, 
but they are essentially different. To clarify, the goal of 
normalization is to target the variance from sequencing, like 
library preparation, amplification bias caused by gene length, GC 
content, etc [48]. Normalization is applied to the count matrix. 
This step does not correct the other sources of unwanted 
variation, which could stem from experimental design 
(sequencing platforms, sequencing lane, timing, reagents for 
example) and should be removed with batch effect correction 
[49]. We must distinguish three cases. Firstly, the correction of 
the samples from the same experiment. Secondly and thirdly, the 
correction between experiments performed in the same 
laboratory or between datasets from different laboratories. For 
the last two, we will need to perform data integration, which 
combines data from different sources and provides users with a 
unified view of them [50].  
 

Several software has been developed to correct batch effects and 
to integrate data and it is based on three broad strategies: 

 

● Regression-based correction 
● Joint dimensionality reduction 
● Joint dimensionality reduction and graph-based joint 

clustering 
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The first strategy uses regression-based correction. ComBat is a 
software that uses this strategy and it was the first method 
written to correct batch effects in microarray and bulk RNA-seq 
[51]. At the beginning of single-cell analysis, ComBat was used, 
but quickly, three main pitfalls were detected. Firstly, it does not 
account for differences in population composition. Secondly, it 
assumes the batch effect is additive. Thirdly, it is prone to 
overcorrection (in case of partial confounding). This method 
works well in small-medium datasets like microarray with 
similar cell type composition. Otherwise, it will fail in a large 
dataset with a complex mixture of cell types [49,50,52]. Another 
method must be used to correct the batch effect in scRNA-seq.  
 
The second strategy uses joint dimensionality reduction (jDR). 
By definition, dimensionality reduction includes numerous 
methods for transforming a high-dimensional space, with a lot of 
variables or features, into a low-dimensional one, with few 
variables or features. This transformation will preserve the 
characteristic and/or structure of the data. These methods are 
applied to a dataset individually. In bioinformatics, we can have 
several datasets in our experiments. Joint dimensionality 
reduction will allow us to transform several data sets in a low 
dimensional space while preserving the specificities of each 
dataset. In other words, jDR methods use existing dimensionality 
reduction methods to apply multiple data sets [53,54]. 
 
Harmony is an example of a tool that uses the jDR strategy [55]. 
Firstly, Harmony will perform a Principal Component Analysis 
(PCA) to integrate the cells in low dimensional space and assign 
them to clusters. Secondly, the algorithm will compute the 
cluster centroids for each dataset. Thirdly it will apply a 
correction factor for each cluster. Finally, cells are rearranged 
into the cluster from the last correction. This workflow will be 
repeated until convergence is obtained, meaning that additional 
training will not improve batch correction. Mutual Nearest 
Neighbors (MNN) is an algorithm to correct batch effects with 
jDR strategy. 
 
The MNN algorithm is inspired by the idea of K-Nearest 
Neighbors (KNN). This algorithm has 2 main assumptions [49]. 
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Firstly, there is at least one cell population that is present in both 
batches. Secondly, the batch effect variation is much smaller 
than the biological effect variation between different cell types. 
The method tries to find the most similar cells (mutual 
neighbors) between the batches. Then, the algorithm will 
measure the difference between batches to quantify how strong 
the batch effect is. This information is used to scale the counts 
for the rest of the cells in the batches. 
 
Seurat uses Canonical Correlation Analysis (CCA) [56]. In this 
method, the data from the batches are projected into a low-
dimensional space. The algorithm maximizes correlation (or 
covariance) between the data sets from different batches. The 
dataset projections are correlated but they do not overlap well in 
low dimensional space. This problem is fixed with the Dynamic 
Time Warping (DTW) algorithm, which compares the similarity 
or calculates the distance between two or more arrays with 
different lengths. CCA data projection will be stretched and 
squeezed to align well between them. 
 
These tools are frequently used in scRNA-seq analysis in 
immuno-oncology. Several studies compared and evaluated their 
efficiency. By testing different tools with five scenarios of batch 
effect correction and several datasets, Tran et al, showed that 
Harmony, and Seurat achieved good scores. On the other hand, 
Combat was the worst-performing method [57].  
 
Feature Selection & Dimensionality Reduction  
 
In data science, we often work with high-dimensional data. The 
dimension of a dataset corresponds to the number of 
attributes/features that exist in a dataset. For example, a table 
with 2 columns is a 2-dimensional dataset, which can be 
represented by a 2D plot. If we add another dimension, we will 
obtain a 3-dimensional space and a 3D plot. We can add as many 
dimensions as we want. High-dimensional datasets are common 
in genomics [58–61]. Having a high dimensional dataset leads to 
difficulties during analyses and visualization, leading to what is 
currently referred to as the ‘Curse of Dimensionality’. In 
scRNA-seq, the datasets have a high-dimensional space with N 
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(tens to hundreds normally) samples, M (thousands) genes, and 
P (thousands) cells. This requires a lot of computational time, 
while some algorithms struggle with many dimensions. 
Dimensionality reduction (DR) describes the techniques that 
transform the data from a high-dimensional space into a low-
dimensional space to overcome these difficulties. They are 
divided into two different groups: (i) linear and (ii) non-linear. In 
linear methods, the output (low dimension) of the system is 
proportional to the input (high dimension). This proportionality 
is achieved by the linear projection of the original data onto a 
low-dimensional space. In the case of non-linear methods, the 
output of the system is not proportional to the input. In scRNA-
seq, we can use both methods.  
 
Principal Component Analysis (PCA) is a linear method, which 
is a commonly used DR method. The PCA algorithm will find 
the first principal component with the largest variance in the 
data. Thus, it will seek the second component with the largest 
variance which is not correlated to the first component. This 
process will be repeated until the component reaches a threshold 
defined by the users.  
 
The t-Stochastic Neighborhood Embedding (t-SNE) algorithm is 
a non-linear method for DR [62]. This algorithm is divided into 3 
steps. Firstly, the algorithm will convert the Euclidean distances 
of a high dimensional space into a conditional probability that 
represents similarities. Secondly, the algorithm will create a low-
dimensional space where the data will be represented, but on 
which we do not know the coordinates of our points. We are 
therefore going to randomly distribute the points over this new 
space. The rest is quite similar to the first step, we calculate the 
similarities of the points in the newly created space, but using a 
t-Student distribution and not Gaussian. Thirdly, to faithfully 
represent the points in the lower dimensional space, we would 
ideally like the similarity measures in the two spaces to be 
consistent. We, therefore, need to compare the similarities of 
points in the two spaces using the Kullback-Leibler (KL) 
measure. 
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The Uniform Manifold Approximation and Projection (UMAP) 
algorithm is based on three assumptions about the data. Firstly, 
the data are uniformly distributed on the Riemannian manifold. 
Secondly, the Riemannian metric is locally constant, and finally, 
the manifold is locally connected. According to these 
assumptions, the manifold with fuzzy topology can be modeled. 
The UMAP algorithm has two main stages. The first stage 
involves constructing a weighted graph that encodes the local 
structure of the data. This is done by selecting a set of 
"landmark" points in the high-dimensional space and then 
calculating the distances between each point and its nearest 
neighbors. The distances are used to construct a weighted graph, 
where the nodes represent the data points and the edges represent 
the distances between them. The second stage involves finding a 
low-dimensional representation of the data that preserves the 
global structure of the graph. This is done by minimizing a cost 
function that measures the difference between the distances in 
the original high-dimensional space and the distances in the low-
dimensional space. This optimization problem is solved using a 
technique called "stochastic gradient descent," which involves 
iteratively updating the low-dimensional representation in a way 
that reduces the cost function. UMAP has superior run-time 
performance compared with the t-SNE [63,64].  
 
Clustering and Cell Type Annotation  
 
These methods presented previously gather a set of learning 
algorithms whose goal is to group unlabeled data with similar 
properties. Thus, we obtain a cluster of different groups of cells 
whose cell types are unknown. We then need to assign cell types 
for each group. This step is a critical feature of scRNA-seq. 
Several tools Seurat [45], Monocle 3 [65], SCENIC [66] perform 
clustering with DR methods (t-SNE, UMAP) and cell type 
identification. In this step, we can identify rare cell types or 
subpopulations. In order to improve this identification, new 
tools, like scClassify [67], SingleCellNet [68], and Sincell [69] 
have been developed. Once the cell type assignment is done, we 
can start the downstream analysis, like cell trajectories or cell-
cell communication inference. 
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An Example of Downstream Analysis: Cell-Cell 
Communication Inference and Analysis in TME  
 
After clustering annotation, the downstream analysis will allow 
us to extract biological insights from the scRNA-seq data. As 
written in Data analysis pipeline overview, this analysis can be 
divided into two parts, which are cell- and gene-level. The cell-
level analysis will use methods to characterize cellular structure 
like trajectory inference and cell-cell communication, while 
gene-level with differential gene expression and gene regulatory 
network will investigate molecular signals in the data. At the 
gene-level, with the differential gene expression approach ask 
the question is whether any genes are differentially expressed 
between two experimental conditions. Gene regulatory networks 
with scRNA-seq is the second method that we could perform at 
this level and it will be explained in the next chapter. At the cell-
level, the clustering annotation cannot describe the whole 
cellular diversity. The observed heterogeneity is under 
continuous biological processes. By using trajectory inference 
methods, which use dynamic models of gene expression, it 
becomes possible to capture transitions between cell identities, 
and branching differentiation processes for example. Cell-cell 
communication (CCC) is the second type of analysis that can be 
performed at this level and as explained in the introduction, the 
rise of tools for inference of cell-cell communication from 
scRNA-seq has advanced the development of cancer 
immunotherapies. Here, we will explore more deeply CCC 
analysis with scRNA-seq data. 
 
Cell-cell communication, also known as cell-cell interaction or 
intercellular communication, is essential for the development of 
multicellular systems [70]. Cells are able to receive and process 
many signals simultaneously which are from their immediate 
environment. But cells also send out messages to other cells 
close or far away. This intercellular communication requires 
coordination by soluble factors, associated membrane proteins, 
exosomes, and gap junction channels, for example. In the past, 
researchers thought that CCC was lost in cancer because cancer 
cells are disconnected from healthy cells but it is likely that 
communication is changed but is not lost. For example, in 
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melanoma, malignant cells can deliver exosomes that create an 
environment for tumor cells to survive [71]. With scRNA-seq 
it’s possible to infer CCC between TME, immune, and cancer 
cells. Several tools have been developed to infer CCC from 
scRNA-seq data and it can be difficult to choose a tool for our 
analysis. In this paragraph, we will explain the main ideas behind 
these tools, and after we will compare some of them.  
 
All these CCC inference tools share a common input, the count 
matrix, which contains the transcript levels of each gene across 
different samples and cells. At the same time, the known 
interacting protein or ligand-receptor pairs in specialized 
databases like KEGG and Reactome are collected. This 
information is used to filter the count matrix, which will contain 
only the genes associated with the interacting proteins. This 
filtered table will be used for the CCC analysis which is divided 
into three steps [72]. Firstly, the expression levels of ligand-
receptors pairs are used as inputs to compute a communication 
score by using a scoring function (function f(L, R), where L and 
R are the expression values of the ligand and the receptor). 
Secondly, an aggregation function will compute the 
communication scores between samples or cells. In the third 
step, the communication and aggregation scores are used to 
generate different graphics, like hierarchical and circle plots or 
network visualizations, which will facilitate the interpretation of 
the results. In this chapter, we do not explain the mathematical 
methods to compute the computation and aggregation score, but 
we refer the reader to a comprehensive review [73]. 
 
The inference of cell-cell communication from scRNA-seq data 
can help us understand the signaling alterations provoked by 
immune checkpoint blockers in the TME [74]. For example, 
CellPhoneDB was the first tool developed for this aim and 
became one of the most used tools in CCC [75,76]. In 
hepatocarcinoma and esophageal squamous carcinoma, 
CellPhoneDB found a potential reprogramming interaction from 
tumor cells to macrophages by the SPP1-CD44 axis [77,78]. 
This axis is involved in an immune checkpoint. Several studies 
with patients used CellPhoneDB to characterize CCC in ICB 
resistance and response. They identified enhanced signaling of 
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HAVCR3-LGALS9 (TIM3-Galectin9) in CD8+ T cells in non-
responding and resistant patients [79–81]. CellPhoneDB is able 
to highlight the intercellular communication between immune 
cells and cancer cells, but it has some limitations. Indeed, 
CellPhoneDB takes into account only ligands and receptors, 
while it is known that some signaling cofactors in the sender or 
receiver cells can influence intracellular pathways. Alternative 
software, like CellChat, and NicheNet was developed to take this 
point into account. CellChat was used and showed promising 
results in different immunotherapy signaling studies [77,82–84]. 
NicheNet [85] is widely used when researchers want to 
investigate intercellular communication in the TME [74].  
 
Conclusion: The Future of scRNA-seq in 
Immuno-Oncology  
 
Single-cell RNA-seq is revolutionizing our perspective on the 
tumor microenvironment and driving innovative approaches in 
immuno-oncology research [86–88]. In this chapter, we have 
described the main parts of the computational analysis and given 
examples of downstream analysis. Understanding the different 
steps of this analysis is important for generating valuable 
experiments and trustworthy results. Unfortunately, single-cell 
analysis requires statistical knowledge and programming skills 
and can be difficult for biologists. In order to make scRNA-seq 
more accessible to a broader community of researchers and/or 
clinicians, some pipelines have been developed. scAmpi and 
Bullito are automated, flexible, and parallelizable pipelines 
[89,90]. These pipelines include all the steps and software 
described above. The main difference between the two is that 
scAmpi has been developed for clinical applications. pipeCom is 
a flexible R framework for pipeline comparison, which then 
chooses the best among the various tools [91]. 
 
As with everything, there are some limitations of these 
approaches that should be considered. For example, isolation of 
cells from solid tissues can introduce biases on the number of 
cells of each type that is captured and included in the data, so it 
is not advisable to assume that cell numbers obtained in 
scRNAseq experiments are directly proportional to those 
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effectively present in the tissue. Also, defining cell types can be 
done based on expression of proteins on cell surfaces, which are 
not necessarily strongly correlated to the levels of the 
corresponding mRNAs. For this reason, additional technologies 
such as CITEseq [92] and INs-Seq [93] provide a multi-omic 
view of cells, detecting both cell surface proteins and transcripts 
on each cell. Similarly, the combination of transcriptomics with 
the identification of open chromatin regions can currently be 
performed on the same cell, like NEAT-seq [94] and smart3-seq 
[95]. It is also possible to perform genome and transcriptome 
single-cell approaches like G&T-seq [96] and scTrio-seq [97]. 
 
In conclusion, single-cell approaches can be helpful to study the 
TME, but the spatial information and context of the cells are lost. 
Recently the development of spatial omics techniques at the 
single-cell level and computational methods to analyze them are 
revolutionizing biology once again [98]. Nowadays, it is possible 
to combine spatial transcriptomics with scRNA-seq datasets to 
infer spatial cell-cell communication [99–102]. With the 
progress of machine learning, new computational methods will 
be developed to integrate these datasets to understand how cell-
cell communication influences the fate of cells in tumors.  
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