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Highlights  
 

1. ELK3 may be an immune-related gene in colon cancer. 

2. After analysis of CD4+ T cell-related ceRNA networks, the 

chr22-38_28785274-29006793.1—miR-106a-5p—DDHD1 

axis was used for further study. 

3. After analysis of CD8+ T cell-related ceRNA networks, the 

chr22-38_28785274-29006793.1—miR-4319—GRHL1 axis 

was used for further study. 

4. The CD4+ T cell-related genes ADAD1 and DLG3 were 

associated with colon cancer prognosis. 

5. A total of 175 chemical-target pairs in CD4+ T cells and 9 in 

CD8+ T cells were obtained. 
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Abstract  
 

Background: Immune escape is one of the immunological 

mechanisms which lead to tumorigenesis and T cells play an 

important role in this process. 

Objective: To investigate the immune-related genes of the tumor 

infiltrating CD4+ and CD8+ T cells in colon cancer.  

 

Methods: ESTIMATE was used to calculate the stromal and 

immune score of tumor samples, which were downloaded from 

The Cancer Genome Atlas (TCGA)-Colon Cancer (COAD). The 

differentially expressed genes (DEGs) in samples with high- vs. 

low- stromal and immune scores were screened, followed by 

functional enrichment of the overlapping DEGs. The DEGs 

related to the CD4+ and the CD8+ T cells were then screened. 

Moreover, the miRNA-mRNA and the lncRNA-miRNA pairs 

were predicted in order to construct the competing endogenous 

RNA (ceRNA) network. Furthermore, the chemical-gene 

interactions were predicted for the genes in the ceRNA network. 

The Kaplan-Meier survival curves were also plotted. 

 

Results: A total of 83 stromal-related DEGs (5 up-regulated and 

78 down-regulated) and 1270 immune-related DEGs (807 up-

regulated and 293 down-regulated) were screened. The 79 

overlapping DEGs were enriched in 39 biological 

process terms. Furthermore, a total of 79 CD4+ T cell-related 

genes and eight CD8+ T cell-related genes were screened, such 

as ELK3. Additionally, ADAD1 and DLG3, which were related 

to CD4+ T cells, were significantly associated with the prognosis 

of colon cancer patients. Moreover, the chr22-38_28785274-

29006793.1-miR-106a-5p-DDHD1 and chr22-38_28785274-

29006793.1-miR-4319-GRHL1 axis obtained from CD4+ and 

CD8+ T cell-related ceRNAs were considered for further study. 

 

Conclusion: ELK3 may be an immune-related gene in colon 

cancer. The chr22-38_28785274-29006793.1-miR-106a-5p-

DDHD1 and chr22-38_28785274-29006793.1-miR-4319-

GRHL1 axis may be related to the CD4+ and the CD8+ T cell 

infiltration in colon cancer. 
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Introduction  
 

Colon cancer has remained one of the cancers with the highest 

mortality and incidence worldwide, especially in Asia [1]. 

Despite considerable advances in surgical and adjuvant therapy 

for colon cancer, the recurrence rates for stages Ⅰ-Ⅲ and stage 

Ⅳ patients were 30% and 65%, respectively [2]. With problems 

such as resistance, relapse, and metastasis occurring after 

traditional radiotherapy, chemotherapy and new targeted drug 

treatments, people have begun to recognize that tumors depict a 

systemic disease and not just mutations in oncogenes and 

inactivation of the tumor suppressor genes [3,4]. Tumors escape 

the immune surveillance mechanisms, which heralded the advent 

of tumor immunotherapy [5,6]. Immune evasion by tumors is 

one of the most important characteristics of a tumor formation 

[7]. It mainly occurs through the modification of tumor cells and 

changes in the tumor microenvironment. As such, understanding 

the mechanism of tumor immune escape give new strategies for 

immunotherapy [8]. The T cell-mediated immune response of 

anti-tumor is the basis of cancer immunotherapy and has been 

found to be correlated with favorable disease outcomes [9,10].  

 

Tumor immune escape is related to the decline in T cells’ ability 

to respond, which is mainly manifested by immune tolerance to 

the CD4+ T cells and inhibition of activation of the CD8+ T cells 

[11]. CD4+ T helper cells can assist in the activation of naive 

CD8+ T cells and also help to eliminate the major 

histocompatibility antigen class Ⅱ (MHC-Ⅱ)-negative tumor 

cells. However, tumor cells can induce specific immune 

tolerance in CD4+ T cells [12]. During the antitumor immune 

response, CD8 + T cells play a major role in directly killing 

tumor cells by recognizing tumor antigens. However, the local 

tumor microenvironment contains a large number of cytokines, 

which can individually or synergistically affect the activation of 
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cytotoxic T lymphocytes (CTL) and the sensitivity of tumor cells 

to the CTL activity [13]. Through the interaction of various 

immune elements, cancer cels may enter into a dormant state or 

foster tumor immune evasion, which may directly promote 

tumor development and progression. Therefore, we analyzed the 

molecular mechanisms associated with CD4+ and CD8+ T cells 

in colon cancer to explore the possibility of colon cancer 

immunotherapy. 

 

In order to provide a basis for the investigation of colon cancer 

induced T cell-mediated immune escape, miRNA target 

prediction and competing endogenous RNA (ceRNA) network 

construction were performed. Furthermore, prognostic targets 

were evaluated and drug screening was performed to screen 

prognostic indicators and treatment plans for colon cancer 

immunotherapy, which may provide guidance for clinical 

decision-making. In our study, datasets of colon cancer samples 

were downloaded from The Cancer Genome Atlas (TCGA) 

public database. Moreover, we performed enrichment analysis on 

the differentially co-expressed genes (DEGs) which were 

correlated with stroma and immune scores. Furthermore, the 

CD4+ and CD8+ T cell-related DEGs were obtained and analysis 

of the protein-protein interaction (PPI) was further performed. 

Additionally, the ceRNA networks of CD4+ and CD8+ T cells 

were analyzed and the small chemical molecules which were 

related to the DEGs in the ceRNA network were predicted. 

Finally, a survival analysis of the CD4+ and CD8+ T cell-related 

DEGs was performed. 

 

Materials and Methods  
Data Source  
 

The dataset GDC TCGA Colon Cancer (COAD) (version 07-19-

2019) was downloaded from TCGA (https://xenabrowser.net/), 

which included RNAseq FPKM data and corresponding clinical 

phenotype data. The dataset included 448 colon cancer samples. 

The data were analyzed according to the workflow illustrated in 

Figure 1. 
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Figure 1: The workflow of sample processing used in this study. 

 

Analysis of Stromal and Immune Scores  
 

In the mRNA expression profile analysis, the gene expression 

value was calculated by mapping probe (obtained from the 

microarray dataset and the annotation files of the chip platform) 

to gene symbols. The average value was deemed as the level of 

mRNA expression when multiple probes matched to one symbol.  

For the analysis of stromal and immune cell infiltration in tumor 

tissues, Estimation of STromal and Immune cells in MAlignant 

Tumours using Expression data  (ESTIMATE, version 1.0.13) 



Prime Archives in Cancer Research: 3rd Edition 

7                                                                                www.videleaf.com 

[14] in the R package was used for tumor purity predictions. 

Thus, the stromal and immune scores of each tumor sample were 

obtained. 

 

Analysis of the differentially Expressed Genes  
 

Based on the median value of the stromal score, the tumor 

samples were divided into a high stromal score group and low 

stromal score group. Likewise, the tumor samples were divided 

into a high-immune score group and low-immune score group 

according to the median value of the immune score.  

 

The typical Bayesian test in the limma package (Version 3.10.3) 

[15] was used to analyze the differentially expressed mRNAs 

(dif-mRNAs) between the two stromal score and two immune 

score groups, respectively. The dif-mRNAs with a fold change 

value of more than 0.263 and a p-value of less than 0.05 were 

selected as dif-mRNAs.  

 

In order to screen the potential regulatory genes associated with 

both stromal and immune cell content, the overlapping DEGs 

were selected and represented by a VENN diagram. 

 

Enrichment Analysis  
 

Utilizing the Clusterprofiler tool [16] in R package (Version 

3.2.11,), the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) [17] pathway enrichment and the Gene Ontology [18] 

Biological Process (BP) enrichment were performed for the co-

expressed DEGs. The significantly enriched terms with a p-value 

of less than 0.05 and involving no less than two DEGs were 

selected.  

 

Screening CD4+ and CD8+ T cell-related DEGs  
 

Based on the DEGs data of the RNA-seq expression profiles, the 

abundance of immune cell infiltration in the tumor samples was 

estimated by using the Cibersort algorithm [19]. According to 

the Cibersort algorithm, the infiltration of six types of immune 
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cells (CD4+ T cells, CD8+ T cells, B cells, neutrophils, dendritic 

cells, and lymphocytes) in tumor tissues was detected.  

 

The Pearson correlation coefficient between the expression value 

of the DEGs and the abundance of the infiltrated CD4+ and CD8+ 

T cells was calculated. The immune-related DEGs with an 

absolute value of r more than 0.15 were selected. 

 

Construction of the PPI Network  
 

The interactions between proteins encoded by immune-related 

DEGs in CD4+ T cells were retrieved from the STRING [20] 

(version 11.0) database with a PPI score setting of 0.15 (low 

confidence) and the species were human. Based on the retrieved 

PPIs, the CD4+ T cell-related PPI network was visualized using 

Cytoscape [21] (version 3.2.0). The CD8+ T cell-related PPI 

network was constructed using the same method. 

 

Construction of the ceRNA Network  
 

miRWalk 3.0 [22] was used to predict target-miRNA regulatory 

relationships. The miRNAs correlated with DEGs related to the 

CD4+ T cells were predicted and the species was selected as 

human. The regulatory relationships with a related score greater 

than 0.95 which appeared in both the TargetScan and miRDB 

database were selected. The miRNAs correlated with DEGs 

related to the CD8+ T cells were predicted using the same 

method. 

 

The lncRNA-miRNA relationships which were related to the 

CD4+ T cells were predicted using the DIANA-LncBase v.2 [23] 

database. The lncRNA-miRNA regulatory relationships with a 

score of 1 were selected. The lncRNA-miRNA and target-

miRNA data were integrated to construct the ceRNA network of 

the lncRNA-miRNA-target relationships related to the CD4+ T 

cells. The CD8+ T cell-related ceRNA network was also 

constructed using the same method. 
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Construction of the Small Chemical Molecule-Target 

Network  
 

By utilizing the Comparative Toxicogenomics Database (CTD) 

[24] we searched for the colon cancer-related genes and small 

chemical molecules. Moreover, the overlapping genes which 

were associated with colon cancer and also belonged to the CD4+ 

T cell-related ceRNA network were used to screen the chemical-

target pairs. The CD4+ T cell-related small chemical molecule-

target network was constructed using the Cytoscape. The CD8+ T 

cell-related small chemical molecule-target network was also 

constructed using the same method. 

 

Survival Analysis  
 

The clinical phenotype data related to prognosis in TCGA 

dataset were collected, including the Overall survival (OS) 

status. The CD4+ T cell-related genes were divided into high/low 

expression groups based on the median gene expression value 

and the same grouping was performed for CD8+ T cell-related 

genes. A log-rank statistical test was conducted and the genes 

with a p-value of less than 0.05 were considered to be 

significantly correlated with prognosis. Furthermore, the curves 

of Kaplan-Meier (K-M) survival were plotted. 

 

Results  
Differences in Gene Expression between High- vs Low- 

Stromal and Immune Score Colon Cancer  
 

According to the stromal score, there were 83 DEGs (5 up-

regulated and 78 down-regulated) between the high- and low- 

stromal score groups. Meanwhile, 1270 DEGs (including 807 

up-regulated and 463 down-regulated) were screened between 

the high- and low- immune score groups. The volcano map of 

the DEGs has been shown in Figure 2. Furthermore, there were 5 

up-regulated and 74 down-regulated DEGs which were screened 

in both the stromal and immune groups, and the number of 

overlapping DEGs has been shown in a VENN diagram (Figure 

2C). The overlapping DEGs have been also shown in 

Supplementary Table 1. 
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Figure 2: Gene expression profiles in colon cancer. 

Volcano plot showing the expression profile of genes in high- vs low- stromal 

score (A) and in high- vs low- immune score (B) groups. The red dots and 

green dots in the volcano plot represent up-regulated genes and down-regulated 

genes, respectively. VEEN diagram (C) showing the overlapping differentially 

expressed genes between the stromal score- and immune score-related genes. 

The GDC TCGA Colon Cancer (COAD) dataset (version 07-19-2019) was 

downloaded from TCGA (https://xenabrowser.net/) database. For the analysis 

of the infiltrating stromal and immune cells in tumor tissues, Estimation of 

STromal and Immune cells in MAlignant Tumours using Expression data 

(ESTIMATE, version 1.0.13) in the R package was used. 

 

Enrichment Analysis of the Overlapping DEGs  
 

In the enrichment analysis of the co-expressed DEGs, up-

regulated DEGs were enriched in 22 BP, including response to 

copper ions and response to electrical stimuli (Figure 3A). The 

down-regulated DEGs were enriched in 17 BP, including 

immune response to tumor cells and stabilization of the 

membrane potential (Figure 3B). The co-expressed DEGs were 

not found to be enriched in any of the investigated KEGG 

pathways. 

 

 

 

 

 



Prime Archives in Cancer Research: 3rd Edition 

11                                                                                www.videleaf.com 

 
 

Figure 3: Enrichment analysis of the common differentially expressed genes.  

Gene ontology biological process term enrichment analysis of up-regulated 

differentially expressed genes (A) and down-regulated differentially expressed 

genes (B). 

 

The CD4+ and the CD8+ T cell-related DEGs  
 

Based on the Cibersort algorithm, the abundance of infiltrating 

immune cells (CD4+ T cells, CD8+ T cells, B cells, neutrophils, 

dendritic cells, and lymphocytes) in the tumor samples was 

estimated (Figure 4). Meanwhile, according to the Pearson 

correlation coefficient, 79 CD4+ T cell-related DEGs and 8 CD8+ 

T cell-related DEGs were screened. 

 

 
 
Figure 4: Infiltration of the immune cells in colon cancer. 

 

PPI Network of CD4+ and CD8+ T cell-related DEGs  
 

We screened 59 nodes and 77 interaction pairs in the PPI 

network analysis of CD4+ T cell-related genes, which has been 

shown in Figure 5, including the ETS transcription factor 
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(ELK3). There was no PPI of DEGs related to CD8+ T cells 

obtained under the threshold used in this study.  

 

 
 
Figure 5: Protein-protein interaction networks. Protein-protein interaction 

network of CD4+ T cell-related genes. Red hexagons represent up-regulated 

genes and green nodes represent down-regulated genes. 

 

ceRNA network of CD4+ and CD8+ T cell-related DEGs  
 

In the prediction of miRNA target genes, we obtained 69 

miRNA-mRNA relationships (55 miRNAs and 19 target genes) 

in CD4+ T cells (Figure 6A), while for CD8+ T cells, there were 

only two miRNA-mRNA relationships obtained, including two 

miRNAs and one target gene (Figure 6B). 

 

There were 11 lncRNAs predicted to interact with miRNAs in 

CD4+ T cells. After integrating both this data and the data on the 

miRNA-target relationships, 110 ceRNA regulatory relationships 

were obtained for CD4+ T cells, such as chr22-38_28785274-

29006793.1-miR-106a-5p-DDHD1, which included 45 miRNAs 

and 11 mRNAs (Figure 7A). 
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In the prediction of lncRNAs for CD8+ T cells, four lncRNAs 

were obtained. After integration with the miRNA-target 

relationships, five ceRNA regulatory relationships were obtained 

for CD8+ T cells, such as chr22-38_28785274-29006793.1-miR-

4319-GRHL1, which included one miRNA and one mRNA 

(Figure 7B). 

 

 
 
Figure 6: MiRNA-target regulatory networks. 

MiRNA-target regulatory networks of CD4+ T cell-related genes (A) and 

CD8+ T cell-related genes (B). Green nodes represent down-regulated genes. 

Yellow triangles represent the microRNAs.  
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Figure 7: Competing endogenous RNAs (ceRNA) networks. 

The ceRNA network of CD4+ T cell-related genes (A) and CD8+ T cell-

related genes (B). Green nodes represent down-regulated genes. Yellow 

triangles represent the microRNAs. Purple inverted triangles represent the long 

non-coding RNAs. 

 

Colon Cancer-Related Small Chemical Molecules 

Target the mRNAs in the ceRNA Network  
 

According to the results of the prediction of small chemical 

molecule-target interactions in CD4+ T cells, there were 175 

small chemical molecule-target interactions obtained, including 

two lncRNAs, ten genes, and 64 types of small chemical 

molecules (Figure 8A). In the prediction analysis for CD8 + T 

cells, there were nine small chemical molecule-target 

interactions obtained, including one gene and nine types of small 

chemical molecules (Figure 8B). 

 



Prime Archives in Cancer Research: 3rd Edition 

15                                                                                www.videleaf.com 

 
 
Figure 8: Chemical-gene interaction networks. 

Chemical-gene interactions were predicted for the genes in the competing 

endogenous RNAs (ceRNA) networks by using the CTD database. The 

chemical-gene interaction network of genes in the CD4+ T cell-related ceRNA 

network (A) and CD8+ T cell-related ceRNA network (B). Green nodes 

represent down-regulated genes. Blue squares represent the small chemical 

molecules. Purple inverted triangles represent the long non-coding RNAs. 

 

CD4+ and CD8+ T cell-related Genes associated with 

Colon Cancer Prognosis  
 

After screening for DEGs associated with survival, the adenosine 

deaminase domain containing 1 (ADAD1), and the discs large 

MAGUK scaffold protein 3 (DLG3) were selected from the 77 

CD4+ T cell-related DEGs. However, there were no survival-

related DEGs in the eight CD8+ T cell-related genes. The K-M 

survival curve of ADAD1 has been represented in Figure 9A and 

the K-M survival curve of DLG3 has been represented in Figure 

9B. 
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Figure 9: The Kaplan-Meier curves of overall survival in patients with colon 

cancer. 

 

After screening for differentially expressed genes associated with survival, the 

adenosine deaminase domain containing 1 (ADAD1), and the discs large 

MAGUK scaffold protein 3 (DLG3) were selected from 77 CD4+ T cell-

related genes. There were no survival-related differentially expressed genes in 

the eight CD8+ T cell-related genes. The Kaplan-Meier curves of overall 

survival showing the prognosis value of ADAD1 (A) and DLG3 (B).  

 

Discussion  
 

In this study, by comparing the samples in the database between 

groups with high- or low- stromal and immune scores, we 

obtained a total of 83 DEGs (5 up-regulated and 78 down-

regulated) between the two stromal score groups, and 1270 

DEGs (807 up-regulated and 293 down-regulated) between the 

two immune score groups. A total of 79 co-expressed DEGs 

were obtained, which were associated with stromal and immune 

scores. The 5 up-regulated co-expressed DEGs were enriched in 

22 BP (response to copper ions and response to electrical 

stimuli) and the 74 down-regulated co-expressed DEGs were 

enriched in 17 BP (immune response to tumor cells and 

stabilization of membrane potential). Moreover, 79 CD4+ T cell-

related DEGs were screened, with 77 edges and 59 nodes in the 

PPI network, while only eight CD8+ T cell-related DEGs were 

obtained. Furthermore, there were 110 ceRNA relationships in 

the network of CD4+ T cell-related DEGs and five ceRNA 
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relationships in the network of CD8+ T cells. Finally, in order to 

understand the clinical applications of our findings, as well as 

provide a possible method for subsequent prediction of clinical 

prognosis and targeted drug selection, prognostic genes were 

analyzed and small-molecule drugs were screened. In the 

analysis of small chemical molecule-gene interactions, 175 pairs 

were obtained for CD4+ T cells and nine pairs for CD8+ T cells. 

In the survival analysis, ADAD1 and DLG3 were selected for 

CD4+ T cells, as they were the most strongly correlated with 

prognosis. As such, the analysis of the molecular mechanism of 

CD4+ and CD8+ T cells in colon cancer may provide novel 

targets for colon cancer immunotherapy. 

 

ELK3 is a transcription factor belonging to the E26 

transformation-specific (ETS) family [25]. The 

PI3K/Akt/mammalian target of rapamycin (mTOR) and ERK 

signaling pathways activated ELK3 [26]. Notably, the studies 

have showed that ELK3 regulated cell migration and invasion in 

hepatoma cells and breast cancer [27]. In the regulation of 

colorectal cancer stemness, Wang et. al. demonstrated that ELK3 

was involved in. Moreover, ELK3 was shown to be a potential 

target of miR-507, and the expression was restored with the 

abrogation of LINC00525-knockdown [28]. Many important 

biologic processed were regulated by the ETS protein family, 

such as the function of immune cell [29,30]. ELK3 regulated the 

expression of heme oxygenase-1 (HO-1) as a transcriptional 

repressor. Moreover, inflammatory mediators tend to affect the 

expression of ELK3, which was down-regulated by bacterial 

endotoxins. A study by Tsoyi showed that the ETS protein 

family played a role in the immune response. During the 

inflammatory response to infection, ELK3 and HO-1 were 

important for macrophage function [31]. In our study of CD4+ T 

cell-related DEGs, ELK3 was found to be downregulated. 

 

In the present study, the chr22-38_28785274-29006793.1—miR-

106a-5p—DDHD1 axis from the CD4+ T-cell related ceRNA 

network was selected for further analysis. The phospholipase A1 

(PLA1) family was classified as extracellular and intracellular 

proteins, which was implicated in different intracellular 

mechanisms. As a phosphatidic acid (PA)-pre-ferring PLA1 
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(PA-PLA1), intracellular DDHD1 was extensively studied for its 

implication in cancer development. DDHD1 was involved in the 

synthesis of lysophosphatidylinositol (LPI) [32]. LPI activity 

was correlated with tumor growth and aggressiveness, which 

was mediated by the interaction with the G protein-coupled 

receptor 55 (GPR-55) [33-36]. Moreover, DDHD1 was shown to 

support proliferation and survival of colon cancer cell. Studies 

have also demonstrated that through the inhibition of the 

MAPK/ERK and PI3K/Akt signaling pathways, viability of 

colon cancer cell in vitro was reduced and apoptotic cell death 

was increased by the silencing DDHD1 via small interference 

RNA [37]. These results were consistent with previous studies, 

which supported lysophospholipid mediators DDHD1 promote 

tumor. In neoplastic cells, by interacting with GPR-55, LPI was 

inducing the ERK and the Akt signaling [34]. MiR-106a-5p 

belongs to the miR-17 family. According to the consensus seed 

region, there are three clusters in the miR-17 family. MiR-106a-

5p is located on Xq26.2, which belongs to miR-106a-363 cluster. 

MiR-106a-5p was found to be highly expressed in gastric [38-

42], breast [43,44], colorectal [45], and non-small cell lung 

cancers [46]. In squamous cell carcinomas [47], colon cancers 

[48], and gliomas [49], miR-106a-5p was expressed at lower 

levels. Studies have also shown that in colorectal cancer, by 

inhibiting the anti-metastatic gene transforming growth factor-b 

receptor 2 (TGFBR2), cell migration and invasion are increased 

by miR-106a-5 [45]. In our study, DDHD1 was found to be a 

potential target of miR-106a-5p in colon cancer cells, which 

influence the progression in disease. 

 

In our study, the chr22-38_28785274-29006793.1—miR-4319—

GRHL1 axis from the CD8+ T-cell related ceRNA network was 

chosen for further analysis. Grainyhead-like 1 (GRHL1), belongs 

to the GRHL transcription factor family, which comprises 

GRHL1, GRHL2, and GRHL3 [50]. Studies have suggested that 

the Grainyhead family genes have adopted a DNA-binding 

immunoglobulin folded homologous to the DNA-binding 

domain of the key tumor suppressor p53 and that they 

participanted in wound healing, embryonic neural tube closure, 

and epidermal integrity [51-53]. Recently, these transcription 

factors involved in different cancer, such as skin squamous cell 

file:///G:/Vide%20Leaf/Received%20Chapters/Prime%20Archives%20in%20Cancer%20Research_3rd%20Edition/PACR3ED-23-08/Proof.docx%23_ENREF_45
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carcinoma, gastric cancer, breast cancer, colorectal cancer, and 

cervical cancer [54]. Moreover, a study has shown that GRHL2-

knockdown in colorectal cancer cells inhibited cell proliferation 

by targeting ZEB1 [55]. Huang et. al. revealed that the 

expression of miR-4319 was inversely related with patients’ 

survival in colorectal cancer. Moreover, overexpression of miR-

4319 was shown to markedly reduce colorectal cancer cell 

proliferation by infecting the ankyrin repeat and the BTB domain 

containing 1 (ABTB1) and alter the cell cycle distribution [56]. 

Thus, we hypothesized that the chr22-38_28785274-

29006793.1—miR-4319—GRHL1 axis may be correlated with 

CD8+ T cells and correlated with the pathogenic mechanism of 

colon cancer. 

 

In conclusion, a series of bioinformatics analyses were 

conducted on DEGs related to CD4+ and CD8+ T cells in the 

colon cancer tissue. ELK3 was found to be down-regulated, 

which may be correlated with colon cancer and CD4+ T cells. 

Moreover, the chr22-38_28785274-29006793.1—miR-106a-

5p—DDHD1 axis from the CD4+ T cell-related ceRNA network 

was selected for further analysis. In the analysis of the CD8+ T 

cell-related ceRNA network, the chr22-38_28785274-

29006793.1—miR-4319—GRHL1 axis was chosen for further 

analysis. In the survival analysis of CD4+ T cell-related DEGs, 

ADAD1 and DLG3 were selected, which had a strong correlation 

with prognosis. Furthermore, 175 small chemical molecule-gene 

interaction pairs in CD4+ T cells and nine in CD8+ T cells were 

screened. In the present study, screening of T cell-related RNAs, 

ceRNA network construction, and miRNA target prediction may 

provide the basis for relevant studies on colon cancer-induced T 

cell-mediated immune escape. The prediction of small chemical 

molecule drugs and survival differences based on differential 

RNA expression may provide a novel direction of clinical 

decision making for the treatment and prognosis evaluation of 

colon cancer from the perspective of immunity. 
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