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Abstract  
 

Since 2007 Reunion Island, a French overseas region located in 

the Indian Ocean, aims to achieve energy self-sufficiency by 

2030. The French government has made this insular zone an 

experimental territory for renewable energy resources (RES) by 

implementing great powers photovoltaic (PV) plants. However, 

the performance of PV conversion is highly climate dependent, 

and there have been many research contributions to show that the 

two main factors that influence PV cell efficiency are solar 

radiation and cell temperature. Moreover, considering the high 

variability of environmental factors on PV plants, the high 

penetration of PV in electric systems may threaten the stability 

and reliability of the electrical power grid. In this study, a linear 

relation analysis of time series data collected over one year is 

performed in order to investigate the dependent variable of PV 

power output from explanatory variables such as solar 

irradiance, cell temperature, wind speed and humidity. The 

originality of this paper is to apply cointegration methods, usual 

tools of econometrics, to PV systems. More precisely, this 

research work lies in the use a robust statistical method to model 

a vector cointegrating relationship linking the PV power output 

and the four environmental parameters mentioned above, to 

make accurate forecasts in a tropical area. The Johansen vector 

error correction model (VECM) cointegration approach is used 

to determine the most appropriate PV power output forecasting 

when the desired model is concerned with N explanatory 

variables and for N > 2. This long run equilibrium relationship 
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has been tested over many years of data and the outcome is more 

than reliable when comparing the model to measured data. 
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ACF- AutoCorrelation Function; ADF- Augmented Dickey 

Fuller; AIC- Akaike Information Criteria; AR- Auto-Regressive; 

ARIMA- Auto-Regressive Integrated Moving Average; ARMA- 

Auto-Regressive Moving Average; ARX- Auto-Regressive 

eXogenous; CARDS- Coupled Auto-Regressive and Dynamical 

System; DF- Dickey Fuller; DW- Durbin Watson; ECM- Error 

Correction Model; EG- Engle Granger; G- Solar irradiance; HQ- 

Hannan-Quinn; Humi- Relative Humidity; JB- Jarque Bera; LB- 

Ljung Box; LM- Lagrange Multiplier; MAE- Mean Absolute 

Error; MBE- Mean Bias Error; P- Power output; PACF- Partial 

AutoCorrelation Function; RMSE- Root Mean Square Error; 

SARIMA- Seasonal Auto-Regressive Integrated Moving 

Average; SIC- Schwartz Information Criteria; Swind- Speed of 

wind; T- Cell temperature; VAR- Vector Auto Regression; 

VARX- Vector Auto-Regressive eXogenous; VECM- Vector 

Error Correction Mechanism 

 

Introduction  
 

To avoid an energy crisis created by the exhaustion of the fossil 

fuels, many countries have introduced renewable energy 

policies. For example, Reunion Island, a French overseas 

territory in the Indian Ocean, aims to achieve electrical [1] 

autonomy by 2030. Among renewable energy sources (RES), 

solar energy is considered as a strong potential and availability 

on Reunion Island. That is why, the French government has 

made this insular zone an experimental territory for RES by 

implementing great powers photovoltaic (PV) plants more than 

194 MW in 2019. However, due to the high variability of 
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environmental factors [2,3] on PV cell efficiency, the high 

penetration of PV in electric systems may threaten the stability 

and reliability of the electrical power grid for smart buildings or 

smart city applications. Indeed, one of Reunion island project is 

to build up active micro-grids or virtual PV power plants to feed 

in power to all devices and appliances of a smart building. 

Therefore, PV systems operating under real field conditions are 

of great importance for obtaining accurate prediction of their 

efficiency and power output.  In this context, an accurate 

forecasting [4–6] of the PV power generation can improve 

system reliability and power quality, and reduce the impact of 

uncertainties on the grid. However, the accuracy of PV power 

output forecasts from inclined building mounted modules for 

optimal energy extraction [7] are not just based on climatic 

conditions [8–10], because its fluctuation is due to several 

factors such as solar irradiance, temperature, wind speed, 

humidity and dust [11]. Over the last decade, a large number of 

solar PV power generation forecasting techniques [12–14] have 

been modeled. The state-of-the-art techniques to produce power 

forecasts for PV has been described and classified [5] in three 

main approaches : physical, statistical and hybrid methods. Sobri 

et al. [6] also reviewed PV power output forecasting techniques 

but classified them into three different major methods: statistical-

time series methods, physical methods and ensemble methods. 

Among the statistical-time series approach, classical regression 

methods, which have been studied, take advantage of the 

correlation nature of meteorological parameters using prediction 

models as input [15–17]. However, regression between non-

stationary series [18,19] may conclude on the existence of two 

variables even though there is no real relationship between them.  

The goal of this study is to parameterize, and to our knowledge 

for the first time in an insular zone, the more realistic 

relationship between PV plant power output and relevant 

meteorological factors such as incoming irradiation, cell 

temperature, wind speed and humidity using a powerful 

statistical technique. 

 

The proposed method falls into the category of multiple linear 

regression methods. There have been some recent studies 

concerning PV power generation estimate thanks to a 
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relationship between a dependent variable (PV power) and 

independent variables, called predictors. Antonanzas et al. [5] 

made a classification: 

 

• Linear stationary models. Auto-Regressive methods (AR) 

[20] models the PV power output as a linear combination of 

the lagged values of its predictors, simple Moving Average 

(MA) [21], the Auto-Regressive Moving Average (ARMA) 

[22] models combining the two last methods, AR eXogenous 

(ARX) [20] methods add exogenous data to an AR model, 

ARMAX [21] an ARMA model with exogenous data and also 

the Vector AR (VAR) and Vector ARX (VARX) [23]. 

• Linear non-stationary models. Auto-Regressive Integrated 

Moving Average (ARIMA) [24] techniques model a 

stochastic process combining AR component to a MA 

component, the Seasonal ARIMA (SARIMA) [25] which 

introduce a seasonal component and the coupled auto-

regressive and dynamical system (CARDS) [26] model. 

 
Researches classified in general, PV power forecasting depends 

on the meteorological and solar irradiance data, the type of 

method used to forecast and the forecasting horizon. Zamo et al., 

Kostylev et al. And Das et al. [27–29] proposed a classification 

for these forecasting time horizon:the forecasting of PV power 

production in different categories based on the needs of the PV 

production and transport actors. 

 

• Very short-term forecast horizon: a few second to one hour, 

used for electricity dispatch in real time and energy 

smoothing. 

• Short-term forecast: for one hour, several hours up to a day 

ahead, to guarantee system commitment and scheduling 

• Medium-term forecast: multiple days to months ahead, to 

ensure power system planning  

• Long-term forecast: months to one to several years, to find 

and assess potentially resourceful sites. 

 
This statistical method aims at creating a medium-term forecast 

model of the hourly production of PV electricity for the next 

days, in order to answer needs of electricity grid managers, 
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energy traders and producers. Parametrized and regressive model 

such as the one proposed is best built for short and medium-term 

forecast horizon [30]. 

 

In this paper, a linear relation analysis of time series data 

collected over a year is performed, and the dependent variable of 

PV power output P is investigated on explanatory variables such 

as solar irradiation, cell temperature, wind speed and humidity. 

These four variables are denoted respectively as G, T, wind and 

humi. For that, the stationarity of each previous cited time series 

is tested. Then, the Augmented Dickey Fuller (ADF) test is used 

to determine the method of regression estimation between the 

PV and all influencing variables. A former study [31] using a 

robust statistical technique has shown a relationship between P 

and T in a non-tropical zone. The statistical method used was the 

Engle & Granger (EG) cointegration technique. The 

disadvantage of the EG method is that it does not distinguish 

several cointegration relationships. For instance, the study of N 

variables simultaneously, with N > 2, may lead to up to N-1 

cointegration relations, and the method of EG allows to obtain 

only one cointegration equation. To overcome this difficulty, an 

original statistical study of the Johansen technique [32,33] is 

proposed. The Johansen cointegration approach is suggested to 

determine the most appropriate PV power output-forecasting 

model. Even though the Johansen approach for cointegration has 

been a popular tool in applied economics [34], it has never been 

applied to renewable energy technologies and even less to PV 

systems for forecasting.  

 

For optimal energy extraction, the PV design for this study is a 

building mounted on the grid connected system where the 

modules that make up the PV plant are at a tilted angle of 21°, 

same as Reunion Island latitude. The polycrystalline PV cells of 

180W each are equipped with solar irradiance, cell temperature 

and wind sensors. For this study, the sample of one year daily 

means data is retrieved among 7 years of measurements from the 

COREX building located at La Possession in the west coast of 

the island and all tests are performed under 64-bit Eviews 

software 9 environment of HIS Global Incorporation. This paper 
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is part of a European project1, one of the main focuses of which 

is PV power output-forecasting in tropical island environments. 

 

The rest of the paper is organized as follows. Section 2 explains 

the effect of environmental factors on PV systems. Section 3 

describes time series and their properties, and statistical 

techniques used in this study to link PV power output and 

environmental parameters (explanatory variables). Section 4 

deals with the principle of cointegration and vector error 

correcting model for the determination of the short and long run 

relationship between the explanatory variables. In section 5, the 

Johansen cointegration approach is detailed whereas Section 6 

shows the application of this approach to experimental data. 

Section 7 presents obtained experimental results. Finally, a 

discussion is proposed in Section 8 and appropriate conclusions 

and future works are given in Section 9. 

 

Effect of Environmental Factors on PV Systems  
Solar Radiation Effect  
 

Light can be considered to consist of a stream of tiny particles of 

energy called photons which when fall on a PV cell convert 

photonic energy into electrical energy. The PV characteristic 

current—voltage (I—V) curve and power-voltage (P-V) is 

illustrated in Figure 1. The most relevant parameters used to 

evaluate the performance of solar cells are the short-circuit 

current (ISC) and the open-circuit voltage (VOC). The conversion 

efficiency (η) is determined from these parameters and is 

calculated as the ratio between the generated power at the 

maximum power point (PMPP) and the incident solar irradiance 

(W/m²). As indicated in Figure 1, the greater is the power of the 

solar radiation, the greater is PMPP. Therefore, solar irradiance is 

an environmental factor that is considered in this study. 

 

 
1 French acronym for Supervision, Dynamic Management and Optimization of 
Urban Micro grids for Island Electricity Self-sufficiency. 
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Figure 1: Power-Voltage and Current-Voltage curve of a solar cell. 

 

Temperature Effect  

 
Solar irradiance is the biggest environmental factor for solar 

cells that convert light into electricity. PV modules generate 

electrical power proportionally of the solar radiation while 

considering the PV module performance is sharply sensitive to 

cell temperature. Solar irradiance and cell temperature are two 

factors, which affect the performance of a PV cell. The PV cell 

temperature affects negatively its voltage and positively its 

current. 

 

Whereas manufacturers only provide PV characteristics under 

laboratory Standard Testing Conditions (STC), in real 

conditions, the PV cell temperature T also has great influence 

[35,36] on the power output P. In tropical zone, cell 

temperatures can reach or even exceed 70 ℃ compared to 25 

℃ STC conditions. T is required to calculate the power loss, 

usually between −0.35 and −0.5%/℃. This means that every 10 

℃ in excess results in a decrease in P between 3.5 and 5%. As P 

changes with temperature fluctuations, this parameter must be 

taken into account to optimize the annual yield and to analyze 

electrical grid temporal stability of their supply. 

 

Although T is one of the most important factors that affect the 

performance of the PV modules, additional physical conditions 

such as humidity, wind and dust have drastic impact on P. 
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Humidity Effect  
 

Humidity is the amount of steam present in air. Figure 2a shows 

the low percentage of reflected light due to the glazing cover 

when most of the incident photonic energy is converted into 

electrical energy. 

 
Figure 2: (a) Strong PV power output; (b) Weak PV power output due to 

humidity. 

 

Small steam particles in the atmosphere cause light diffraction 

or scattering, and thus altering direct PV irradiation. Figure 2b 

shows light refraction due to steam that greatly reduces light 

intensity to the solar cells leading to reducing power output. 

Additionally, reflection and dispersion of the striking light to 

these water molecules that act as a prism is subjected to more 

losses of the total energy which is not subjected to conversion 

by the PV module.  

 

Tropical regions such as Reunion Island in the Indian Ocean are 

frequently humid areas. This environmental factor creates 

obstacles and much sharper drop in irradiance levels resulting 

in a PV efficiency decrease mainly on open circuit voltage and 

short circuit current. 

 

Wind Effect  
 

As the wind cools well by ventilation the solar modules, this 

factor reduces the temperature impact. Higher is the wind 

speed, better is the conversion efficiency. Consequently, the 

impact of the wind effect is opposite to solar irradiation and 

temperature effects. As indicated by manufacturers, PV 

modules that are cooled by 1 ℃ should increase the efficiency 

up to 0.05% with increasing percentage over time.  It has also 

been shown that adaptive cooling mechanism [37] for PV 
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modules can reduce thermal losses below 5% compared to 

uncool PV systems. Wind speed also has other effects on PV 

modules such as an increase in wind speed improves short 

circuit current and open circuit voltage. Such experiment has 

been conducted to show the effect of the wind speed on the 

output of modules. The wind effect on photonic particles is 

similar to that on propagating electromagnetic radio waves [38]. 

Collisions between particles of the air and photonic particles 

result in a change of direction of the latter in an opposite 

direction. Thereby, air temperature, humidity and wind are 

three environmental factors considered in this study. 

 

Dust Effect  
 

The effect of dust particles deposits on PV modules has the 

effect of decreasing the electrical energy output by reducing the 

amount of absorbed solar radiation. The quantity of dust on PV 

modules has been studied [39] where a decrease in electrical 

energy output has been observed varying between 3% and 11% 

depending on this quantity. Although Piton de la Fournaise 

Volcano in Reunion Island is still under activity generating the 

dust, this factor is not considered in this study yet. 

 

Time series & properties  
Time Series  
 

A time series is a set of observations on the values that a variable 

takes at different times. Time series data are collected at regular 

time intervals such as for instance daily, weekly or annually [40]. 

A time series is stationary if its mean and variance are constant 

over time, and the value of the covariance between two time 

periods depends only on the distance or gap or lag between the 

two time periods and independently of the actual time [41]. If a 

time series is stationary, that is it does not require any 

differencing. In this case, it is said to be integrated of order zero 

and denoted I(0). If a time series is not stationary in the sense 

just defined, it is called a non-stationary time series. Usually, if a 

non-stationary time series has to be differenced d times to make 

it stationary, that time series is integrated of order d noted as 

I(d). For example, if a time series has to be differenced twice, 
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that is taking the first difference of the first derivatives to make it 

stationary, it is called second order integrated time series denoted 

as I(2). Although the interest is in stationary time series, non-

stationary time series are often encountered. Let’s explain this 

process through a random walk model and finally define 

conditions for stationarity. Considering yt as a variable following 

a random walk where yt is regressed at time t on its value lagged 

one period, as given in Eq 1: 

 

𝑦𝑡 = 𝑦𝑡−1  +  𝜀 𝑡                                                            (1) 

      

where t is a white noise error term with the mean of zero and the 

variance σ2. From Eq 1, by proceeding by recurrence Eq 2 can 

be obtained as follows: 

𝑦1  =   𝑦0    +  𝜀 1 𝑦2  =   𝑦1  +   𝜀 2  =    𝑦1 + 𝜀1  +   𝜀2          (2) 

     𝑦𝑡  =   𝑦0  +  ∑ 𝜀𝑖
𝑡
𝑖=1       

                                             

where i is given as NID (0, σ2) and NID represents normally 

and independently distributed with a mean value of zero and a 

constant variance. This process is non-stationary as shown in Eq 

3 where Var stands for variance.  

𝑉𝑎𝑟 (𝑦𝑡) =   𝑉𝑎𝑟 (∑ 𝜀𝑖
𝑡
𝑖=1 ) =        ∑ 𝑉𝑎𝑟(𝜀𝑖

𝑡
𝑖=1 )  =   ∑ 𝜎𝜀

2𝑡
𝑖=1   =    𝑡 𝜎𝜀

2      (3)       

From Eq 3 is deduced that the variance of yt process is a time 

function. Considering that t increases, its variance increases 

indefinitely, and thus violating a condition of stationarity. 

 

A time Series is stationary if it has the following conditions: 

 

− constant mean for all time t, 

− Var (yt) is a finite constant independent of t, 

− Cov (yt, yt-1) is a finite function which is independent oft. 

 

It is also interested to express Eq 1 in a differential form as given 

in Eq 4: 

𝑦𝑡 − 𝑦𝑡−1  =    ∆𝑦𝑡    =   𝜀 𝑡                                                                   (4) 

 

If yt is non-stationary, its first derivatives are stationary and 

correspond to the first derivatives of a random walk-time series 

which are stationary. 
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Properties of Time Series  
 

Regression analysis of time series is used to discover or to verify 

the predicted relationships and properties of integrated series 

have to be verified. Regression of a non-stationary time series on 

another non-stationary time series can produce a spurious 

regression [42]. To avoid the spurious regression problem from 

such regression, we must transform non-stationary time series to 

make them stationary. Several statistical tests have to be 

executed to determine if a time series is stationary. Unit root test 

has become one of the most widely used methods for testing the 

stationarity of a time series. To explain the idea behind the unit 

root test, a general form of Eq 5 is used as follows: 

 

    𝑦𝑡 =  𝑦𝑡−1  +  𝜀 𝑡                                                               (5) 

 

which can be transformed as Eq 6 
𝑦𝑡−  𝑦𝑡−1 =    𝑦𝑡−1−   𝑦𝑡−1   +   𝜀 𝑡      𝑦𝑡  = (  − 1)𝑦𝑡−1  +

   𝜀𝑡                                                                                                                       (6) 

 

where  is the first difference operator. The unit root test is a 

hypothesis test with the following hypothesis: if  = 1, there is a 

unit root and the time series is non-stationary which refers to the 

null hypothesis H0. The alternative hypothesis H1 is that  < 1 

and the time series is stationary.  

 

Residual Diagnostics  

 
The serial correlation in residual from estimated equation test is 

based on the hypothesis testing. There many residual tests, first 

order, second order or squared residuals. The following sections 

describe only some tests and their outcome interpretations that 

are used in this study to determine the most perfect model 

between PV output and climate parameters in a tropical zone. 

The goal of this section is to give the guideline about serial 

correlation. Only if a model is free from serial correlation or 

heteroscedasticity, then it can be used for forecasting. 
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Augmented Dicker Fuller  

 
Dickey Fuller (DF) test is the simplest approach to test for a unit 

root. In case of autocorrelation problem of t, DF developed a 

test called Augmented Dickey Fuller (ADF) test [43]. As an 

example, the outcome of the ADF test applied to the variable P, 

using the Eviews software, is represented in Table 1. If the null 

hypothesis is true, which expresses itself P has a unit root, such 

series is a non-stationary one. The ADF test is based on t-statistic 

approach and probability approach as represented in Table 1, 

respectively. DF tabulated critical values are chosen significance 

level at 1%, 5% and 10%, respectively. To check the unit root 

test, the calculated t-statistic with its corresponding probability, 

which is indicated as statistic ADF test in Table 1, has to be 

compared to the critical values, and mainly at 5% level. 

According to the guideline, if the test statistic value is greater 

than the 5% level critical value as well as for probability value, 

the null hypothesis cannot be rejected. Therefore, power series 

are non-stationary series. In Table 1, the ADF t-statistic value 

which is −1.000357 greater than −1.941740 value at 5% level as 

well as for the probability value at 28.44%. 

 
Table 1: Example of the outcome of an ADF test. 
 

Null Hypothesis: POWER has a unit root 
  

Exogenous: None 
   

Lag Length: 8 (Automatic—based on SIC, maxlag = 16) 
 

  
t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic −1.000357 0.2844 

Test critical values 1% level −2.571643 
 

 
5% level −1.941740 

 

 
10% level −1.616087 

 

* MacKinnon (1996) one-sided p-values 
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Table 2: Example of the outcome of an ADF test for stationary series. 
 

Null Hypothesis: D(POWER) has a unit root 
  

Exogenous: None 
   

Lag Length: 8 (Automatic - based on SIC, maxlag = 16) 
 

  
t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic −12.51960 0.2844 

Test critical values 1% level −2.571643 
 

 
5% level −1.941740 

 

 
10% level −1.616087 

 

* MacKinnon (1996) one-sided p-values 
  

 

The same test was repeated for the first difference of P. It can be 

deduced from the corresponding outcome given in Table 2 where 

D(P) or I(1) series is stationary at first difference. 

 

Correlogram  

 
Another visual diagnosis tool identified as the first step for the 

stationary test can be done by computing the autocorrelation 

function (ACF), and the partial autocorrelation function (PACF). 

This graphical tool is known as correlogram or Ljung Box (LB) 

statistics [44]. The following figures show correlograms of a 

time series. Autocorrelation and partial autocorrelation functions 

characterize the pattern of temporal dependence in the series. 

Autocorrelation and partial autocorrelation give the impression 

that the residuals are purely random. Correlogram is simply plots 

of ACFs and PACFs against the lag length given as the 

arithmetical progression 1 to 36 in each above table. The solid 

vertical line in this diagram represents the zero axis and 

observations between spikes above or below the line are positive 

and negative values, respectively. For stationary time series, the 

correlogram tapers off quickly, whereas it dies off gradually for 

non-stationary time series. For example, Figure 3(a) represents a 

non-stationary time series correlogram, similar to a purely white 

noise process and the autocorrelations at various lags hover 

around zero. Figure 3(b) represents a typical stationary series, as 

the autocorrelation coefficient starts at quite a high value and 
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declines very slowly toward zero as the lag lengthens. Finally, 

we can simply point out the statistical significance of the 

autocorrelation coefficients given by the Eq 7, where k is the lag 

number: 

 

k  NID (0, 1/N)                                                             (7)   

 

The sample autocorrelation coefficients are normally distributed 

with zero mean and a variance equal to one over the sample size 

N. We conclude this visual diagnostic from Figure 3 by 

specifying that, if the time series is not stationary at level, it has 

to be differenced once or more times to achieve stationarity.  

 

Furthermore, correlograms of both autocorrelation and partial 

autocorrelation must indicate that residuals are purely random. 
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Figure 3: Example of (a) non-stationary correlogram; (b) stationary 

correlogram. 
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Q-Statistic  

 
An alternative to LB statistics is the Q statistics developed by 

Box and Pierce is a joint hypothesis test of all the correlation 

coefficients instead of individual tests [45]. 

 

As seen in Figure 3, due to the large number of samples in this 

study, the Q-stat values differ consistently between the two 

tables at lag order 36. Although each corresponding probability 

value is significant, only Figure 3(b) is acceptable due to 

stationary criteria. 

 

Durbin—Watson & LM Tests  

 

Durbin Watson (DW) statistics is a way for detecting serial 

correlations in a regression model of for example three variables 

(POWER, IRRA and TEMP) as given in Eq 8. 

 

   Power =  IRRA +  TEMP + C + Power (-1)                      (8) 

  

where Power is the dependent variable, and Power (-1) is the 

one-period lag dependent variable. Eq 8 is also known as an 

autoregressive (AR) model. DW can be used only if there is only 

one lag in the AR model. For several-periods lag, Q-statistics 

and Lagrange Multiplier (LM) tests have to be applied to the AR 

and to the outcome. The corresponding probabilities obtained 

using Eviews software are represented in Table 3(a) for the LM 

tests, and Table 3(b) for the Q-statistics tests. If the null 

hypothesis H0 is true, there no serial correlation. If the alternative 

hypothesis H1 is true, there is a serial correlation. However, all 

probability values being less than 5%, H0 can be rejected, or 

rather H1 is accepted. Indeed, there is serial correlation in the AR 

model. 
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Table 3: (a) Outcome of serial correlation test. 

 

Dependent Variable: POWER 

   

Method Least Squares 

    

Date 07/11/19 Time: 09:41 

   

Sample (adjusted): 1/02/0365 1/01/0366 

  

Included observations: 365 after adjustments 

  

Variable  Coefficient Std.Error t-Statistic Prob. 

IRRA 17.98115 0.320048 56.18262 0.0000 

TEMP 12.70429 10.80203 1.176102 0.2403 

C −197.9435 307.4385 −0.643847 0.5201 

POWER(-1) −0.002498 0.008110 −0.308041 0.7582 

R-squared 0.979952 Mean dependent var 8588.047 

 

Adjusted R-Squared 0.979786 S.D dependent var 2998.959 

 

S.E.of regression 426.3841 Akaike info criterion 14.95946 

 

Sum squared resid 65631037 Schwarz criterion 15.00220 

 

Log likelihood −2726.101 Hannan-Quinn criter. 14.97644 

 

F-statistic 5881.985 Durbin-Watson stat 1.680805 

 

Prob(F-statistic) 0.000000 

   

Table 3: (b) Correlogram of serial correlation. 

Q-statistic probabilities adjusted for 1 dynamic regressor 
   

Autocorrelation Partial Correlation 
 

AC PAC Q-Stat Prob* 

 

  

 
1 0.160 0.160 9.3646 0.002 

  
2 0.094 0.070 12.621 0.002 

  

3 0.405 0.391 73.213 0.000 
  

4 0.072 −0.049 75.162 0.000 
  

5 0.074 0.036 77.226 0.000 
  

6 0.093 −0.097 80.424 0.000 
  

7 0.104 0.114 84.494 0.000 
  

8 0.096 0.035 87.967 0.000 
  

9 0.116 0.120 93.009 0.000 
  

10 0.073 −0.045 95.046 0.000 
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Usually, the LM test is used for higher order errors with 

variables that are dependent on longer periods of time. This is 

the purpose of the Breush-Godfrey test for the estimation of least 

squares or second-order least squares. The result is given in 

Table 4. 

 
Table 4: LM Test of serial correlation. 

 

Breush-Godfrey Serial Correlation LM 

Test 

  

F-Statistic 5.885122 Prob.F(2,359) 0.0031 

Obs*R-squared 11.58707 Prob.Chi-

Square(2) 

0.0030 

 

Analyzing the observed R squared and the corresponding 

probability, less than 5% significant level, the null hypothesis 

can be rejected. Therefore, there is a serial correlation in the AR 

model. According to both tests, there is a serial correlation in the 

AR model, which cannot be used for forecasting. 

 

Histogram—Normality Test & Jarque Bera Statistic  

 
If residuals are normally distributed, a bell form shaped curve 

can be superimposed on the histogram [46]. Plotting residuals of 

the latter is a rough method to test the normality hypothesis. The 

histogram is usually given with significant value of the Jarque 

Bera (JB) statistics which has two degrees of freedom for the 

null hypothesis of normality, i.e., the residuals are normally 

distributed. JB must be used for very large samples. Considering 

the great number of observations, this is very suitable for this 

study. The JB formula for the null hypothesis of normality is 

given in Eq 9: 

 

 𝐽𝐵 = 𝑛 [
𝑆2

6
 + 

(𝐾−3)²

24
]                                                   (9)  

where S is the skewness coefficient (symmetrical form), K is the 

kurtosis coefficient (flattening form) and n is the sample size. 

For example, the JB is expected to be null if S = 0 and K = 3 for 

a normality test. 

The horizontal axis of the histogram represents variables of 

interest such as an ordinary least squares residuals value. The 
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vertical axis is the expected value of this variable if it were 

normally distributed. Figure 4 represents the histogram with a 

normal distribution considering the JB value and the 

corresponding probability value, indicating the null hypothesis of 

normal distribution for this large number of observations, cannot 

be rejected. 

 
Figure 4: Example of a normal residual distribution. 

 

More probability distributions shall be used in this study. Some 

definitions and technical terms are explained in the following 

section for a better understanding, and results outcomes through 

different Eviews tables. 

 

Further definitions of Statistical Distributions 

 
(a) Chi-Square 

 
Considering random variables such as x1, x2, x3… xn that are 

normally and independently distributed.  xi follows the normal 

distribution given as in Eq 10: 

 

𝑥𝑖 = 𝑁𝐼𝐷 ( 𝜇𝑖 , 𝜎𝑖
2)                                                           (10) 

                                          

where  and ² are the mean value and variance of x, 

respectively. Variances measure the dispersal of the data points 

around the mean. If data fall far from the mean value, variance 

shall increase. 

 

The chi-square denoted as ² is given by the Eq 11: 
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    𝑥1
2 + 𝑥2

2 + 𝑥3
2 … . . 𝑥𝑛 

2 = ∑𝑥𝑖
2   ≅  𝜒𝑛

2                                (11)   

                         

where n denotes the degree of freedom. This test is sometimes 

referred to as the median test. Chi-squares are specifically 

tabulated for different uses of the null hypothesis. 

 

(b) Coefficient of Determination 

(c)  

A linear regression model is given as in Eq 12: 

             𝑦𝑡  =   
1
𝑥𝑡  +  

2
 + 𝑒𝑡                                   (12) 

where et is the residual term. The sum squared residual SSR is 

given in Eq 13: 

 

𝑆𝑆𝑅 =   ∑ 𝑒𝑡
2

𝑡                                                                     (13) 

 

The coefficient of determination R² is used to evaluate the 

goodness-of-fit of a regression model. Its value lies between 0 

and 1. If this value is closer to 1, better is the fit. However, R² is 

a measure of the accuracy of the relationship between the model 

and the dependent variable. However, it is not a formal test for 

relationship determination as expressed by the Eq 14: 

 

   𝑅2 =   1 − 
𝑆𝑆𝑅 

𝑇𝑆𝑆
                                   (14)          

where TSS is the total sum of squares given as in Eq 15: 

 

𝑇𝑆𝑆 =  ∑ ( 𝑦𝑡 − 𝑦𝑡̅𝑡 )                                       (15)         

where 𝑦𝑡̅ is the estimated value, and  𝑒𝑡  =   𝑦𝑡  −   𝑦𝑡̅ is the 

difference between the observed value of the variable and the 

adjusted value using the estimated coefficient of the model.  

 

(d) F-Statistic 
 

The F-statistic denoted as F test is a joint test that indicates 

whether a linear regression model provides a better fit to the data 

than a model that contains no independent variables. The F-test 

is related to the R-squared as given in Eq 16: 

 

𝐹 =   
𝑅²

𝑘
⁄

(1−𝑅2)
(𝑁−𝑘−1)⁄

                                  (16)   
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where k is the degree of freedom and N the number of 

observations. The F-test as already mentioned is based on the 

hypothesis test. The null hypothesis H0 of F-test states that the 

model with no independent variables fits the data as well as the 

model under test. If the F-test is significant, then it can be 

concluded that the correlation between the model under test and 

the dependent variable is statistically significant. Consequently, 

R² value from Eq 16 is not equaled to zero. The F-test is given 

with its corresponding probability value at a significant level. If 

the probability value is less than the significance level, then data 

provide sufficient evidence to conclude that the regression model 

fits the data better than the model with no independent variables.  

 

(d) Lag length criteria 

 

To determine the best relationship between the model and the 

dependent variable is to choose the optimal lag length as an 

essential element for relationship stability. Including too many 

lagged terms will consume degrees of freedom and possibility of 

multicollinearity whereas too few lags will lead to specification 

errors. Several criteria have been defined such as Akaike, 

Schwartz, Hannan and probably at a lesser extent the Durbin 

Watson. Akaike and Schwartz make it possible to intercede 

when introducing one or more explanatory variables, between 

the loss of degrees of freedom and the information endowment. 

The lower the lag length is, the better the model is. In this study, 

the Akaike information criteria (AIC) and Schwartz information 

criteria (SIC) are considered and will be indicated in the outcome 

table form of Eviews software for all regression determination. 

The AIC is defined as in Eq 17: 

 

𝐴𝐼𝐶 =  𝑒
2 𝑘 

𝑁⁄  
𝑆𝑆𝑅 

𝑁 
 =  𝑒

2 𝑘 
𝑁⁄   

∑𝑒𝑡
2

𝑁
                                  (17)        

 

The SIC relationship is similar to AIC with a half value of 

exponential term. However, it should be noted that for both AIC 

and SIC the lowest lag length should give a better model. Table 

5 is an example of the results that come up for a regression test 

under Eviews. All the specified parameters are indicated in this 

table with the corresponding values. Similar tables will be seen 
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in this study and must be analyzed if the values are statistically 

significant. 

 
Table 5: Statistical parameters. 

 
R-Squared 0.031745 Mean dependent var 8.84E-13 

Adjusted R-Squared 0.018260 S.D dependant var 424.6234 

S.E of Rgression 420.7288 Akaike info criterion 14.93816 

Sum squared resid 63547555 Schwarz criterion 15.00226 

Log likelihood −2720,213 Hannan-Quinn criter. 14.96363 

F-statistic 2.354049 Durbin-Watson stat 2.053022 

Prob(F-statistic) 0.040231 
  

 

Properties of Cointegration and Error 

Correction Mechanism  
Properties of Cointegration  
 

The method of cointegration in regression analysis is based on an 

assumption of stationary increments with fixed time lag called 

I(d). These terminology and notation have been established in 

upper sections. The development of the cointegration technique 

is based on I(d) integration to infer a short time as well as long-

time equilibrium relations between non-stationary variables via 

regression analysis. Here, it should be pointed out that the 

regression of a non-stationary time series (on another non-

stationary time series) may produce a spurious regression. One 

way to lookout against it is to find out if the time series are 

cointegrated. A combination of two or more individual non-

stationary series may result in a stationary series. The properties 

of cointegration are explained as follows.  

 

When regressing using the least squares regression including two 

non-stationary variables as given in Eq 12, and rewritten as 

integrated order I(1) in Eq 18: 

 

𝑒𝑡     =   𝑃𝑡  − 
1
𝐺𝑡  +  

2
     =   𝐼(1)                                     (18)   
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et is non-stationary and auto correlated as the DW is very small. 

Basically, Granger demonstrated that if Pt and Gt are I(d) series, 

a linear combination of et is also I(d) that may result in a 

spurious regression. The last one is characterized by a high R² 

and t Student value even though there is no meaningful 

relationship between the two variables. To avoid such situation, 

regression is performed on variables in first difference which are 

stationary (Pt and Gt are I(0)) as represented in Eq 19: 

 

Δ 𝑃𝑡 =  𝛼 Δ 𝑥𝐺𝑡 +  𝛽 + 𝑢𝑡    ⇒ 𝑢𝑡 =  Δ 𝑃𝑡 −  𝛼 Δ 𝐺𝑡 −  𝛽 = 𝐼(0)              (19)  

 

However, sometimes a regression with variables at level is 

preferred rather than at first difference. In that case, it is 

important to know how to regress non-stationary variables, and if 

the regression is not a spurious regression. Then, the concept of 

cointegration is applied. 

 

The idea behind cointegration is as follows: in a short-term Gt 

and Pt may have a divergent evolution but they will evolve 

together in the long term. There exist then a long-term 

relationship between Pt and Gt that is stable denoted as the 

cointegration relationship given as in Eq 20: 

 

     𝑃𝑡  =   𝑎 𝐺𝑡  +   𝑏                                                           (20)         

 

A summary of cointegration concepts and conditions is given 

below: 

 

Cointegration of two or more-time series suggests that there is a 

long-run, or equilibrium, relationship between them. The two 

cointegration conditions are, firstly, these series have to be of the 

same integrated order I(d). Secondly, a linear combination of 

these series allows to reduce the integrated series to a lower 

order. 

 

To reconcile the short-run behavior with its long-run behavior, 

an error correction mechanism (ECM) has been developed by 

Engle & Granger (EG). 
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Error Correction Mechanism  
 

In this section, to help understanding, only two variables P and G 

are considered to have only one cointegration relationship 

between them. The same principle is extended to five variables 

in the final study. If two variables P and G are cointegrated (Pt – 

â Gt –b is I(0)), then the relationship between them can be 

expressed as an ECM, such as Eq 21: 

 

Δ𝑃𝑡  =   𝛾 Δ𝐺𝑡 +  𝛿 ( 𝑃(𝑡−1)  − 𝑎 𝐺(𝑡−1) − 𝑏) + 𝜐𝑡       (21)  

 

where must have a negative sign, Pt behaves as spring recall 

force and can go back to its long-term equilibrium value given as 

(aG(t−1) + b). Otherwise, the specification of ECM type is not 

valid. The ECM allows to model jointly short-term dynamics 

(variables in first difference) and long-term dynamics (variables 

at level). 

 

The short-term dynamic is given as in Eq 22(a): 
 

𝑃𝑡  = 𝛼1𝑃𝑡−1  +  𝛼2𝐺𝑡  +   𝛼3𝐺𝑡−1 + 𝛼0 + 𝜐𝑡                   (22a)   

   

The long-term dynamic is given as in Eq 22(b) as cointegration 

of two-time series suggests that there is a long-run, or 

equilibrium, relationship between them. 

 

   𝑃𝑡  =   𝑎 𝐺𝑡  +   𝑏 + 𝜀𝑡                                                (22b) 

        

Eq 22(b) is deduced from Eq 22(a) as for the long term by using 

Pt-1 = Pt and Gt-1 = Gt. 

 

This EG method is valid when the number of variables N is 

equal to two but as N > 2, up to N-1 cointegration relations can 

exist. Therefore, EG method is a limited technique, as the study 

of N variables simultaneously does not make it possible to 

distinguish several cointegration relations. To overcome this 

difficulty, the study of a multivariate approach of Johansen 

cointegration is proposed as discussed in the next section. 
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Johansen VECM cointegration  
 

The Johansen test can be considered as a multivariate 

generalization of the augmented Dickey-Fuller test, but the 

former is a strategic test that makes it possible to estimate all 

cointegrating vectors when more than two variables are 

considered. In this study, the Johansen test is applied to 5 

variables where Power (P) is the dependent variable, whereas 

irradiation (IRRA), temperature (Temp), wind speed (Wind), 

humidity (Humi) are explanatory variables. Indications in 

brackets are notation used in Eviews software for this study.  

 

It should be recalled that if non-stationary series are integrated of 

the first order I(1) and found to be cointegrated, a vector error 

correction mechanism (VECM) can be used so as to enable the 

examination of short run as well as long-run dynamics of the 

cointegration series. This is the subject of the next section. 

 

Multiple Cointegration Equation  
 

Considering a vector auto regression (VAR) Pt of order p and N 

variables of non-stationary I(1) as given in Eq 23: 

 

𝑃𝑡  =  𝐴1 𝑃𝑡−1  +  𝐴2 𝑃𝑡−2 +  ….    𝐴𝑝 𝑃𝑡−𝑝   +  𝜀𝑡         (23)        

   

where the matrix rank is respectively, Pt (N,1), A1 (N, N), Pt -1 

(N,1) ……. Ap (N, N), Pt (N,1) and t (N,1). For example, 

considering 5 variables lagged 2, Eq 23 is transformed as in Eq 

24: 

 

𝑃𝑡 =  𝐴1 𝑃𝑡−1  +  𝐴2 𝑃𝑡−2   +  𝜀𝑡                                 (24)        

  

And in the matrix form as represented in Eq 25: 
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[
 
 
 
 
𝑃1𝑡

𝑃2𝑡

𝑃3𝑡

𝑃4𝑡

𝑃5𝑡]
 
 
 
 

=

[
 
 
 
 
𝑎11  𝑎12  𝑎13  𝑎14  𝑎15

𝑎21  𝑎22  𝑎23  𝑎24  𝑎25

𝑎31  𝑎32  𝑎33  𝑎34  𝑎35

𝑎41  𝑎42  𝑎43  𝑎44  𝑎45

𝑎51  𝑎52  𝑎53  𝑎54  𝑎55]
 
 
 
 

[
 
 
 
 
𝑃1𝑡−1 
𝑃2𝑡−1

𝑃3𝑡−1

𝑃4𝑡−1

𝑃5𝑡−1 ]
 
 
 
 

+

[
 
 
 
 
𝑎16  𝑎17  𝑎18  𝑎19  𝑎110

𝑎26  𝑎27  𝑎28  𝑎29  𝑎210

𝑎36  𝑎37  𝑎38  𝑎39  𝑎310

𝑎46  𝑎47  𝑎48  𝑎49  𝑎410

𝑎56  𝑎57  𝑎58  𝑎59  𝑎510]
 
 
 
 

[
 
 
 
 
𝑃1𝑡−2 
𝑃2𝑡−2

𝑃3𝑡−2

𝑃4𝑡−2

𝑃5𝑡−2 ]
 
 
 
 

+

[
 
 
 
 
ϵ1t

ϵ2𝑡

ϵ3𝑡

ϵ4𝑡

ϵ5𝑡]
 
 
 
 

                               (25) 

 

The system equations are given in Eq 26: 

 

𝑃1𝑡 = 𝑎11 𝑃1𝑡−1 + 𝑎12 𝑃2𝑡−1 …𝑎15𝑃5𝑡−1 + 𝑎16 𝑃1𝑡−2

+ ⋯ 𝑎110 𝑃5𝑡−2 + 𝜖1𝑡 

𝑃2𝑡 = 𝑎21 𝑃1𝑡−1 + 𝑎22 𝑃2𝑡−1 … 𝑎25𝑃5𝑡−1 + 𝑎26 𝑃1𝑡−2

+ ⋯ 𝑎210 𝑃5𝑡−2 + 𝜖2𝑡 

                       𝑃3𝑡 = 𝑎31 𝑃1𝑡−1 + 𝑎32 𝑃2𝑡−1 … 𝑎35𝑃5𝑡−1 +
𝑎36 𝑃1𝑡−2 + ⋯𝑎310 𝑃5𝑡−2 + 𝜖3𝑡                      (26) 

𝑃4𝑡 = 𝑎41 𝑃1𝑡−1 + 𝑎42 𝑃2𝑡−1 … 𝑎45𝑃5𝑡−1 + 𝑎46 𝑃1𝑡−2

+ ⋯ 𝑎410 𝑃5𝑡−2 + 𝜖4𝑡 

𝑃5𝑡 = 𝑎51 𝑃1𝑡−1 + 𝑎52 𝑃2𝑡−1 … 𝑎55𝑃5𝑡−1 + 𝑎56 𝑃1𝑡−2

+ ⋯𝑎510 𝑃5𝑡−2 + 𝜖5𝑡 

 

This first difference VAR (2) model can be written in a vector 

error correction model (VECM) as a function of only 𝑃𝑡−1 as in 

Eq 27:   

 

                                 (27)                    

   

where  𝛱 =  𝐴1 + 𝐴2 – 𝐼 and I is the unit matrix. Eq 27 can also 

be written as function of Pt-1 and Pt-2 as given in Eq 28: 

 

                                 (28) 

             

If the coefficient matrix  has reduced rank r < k, where k is the 

vector variables of I(1), r is the number of cointegration 

equations. The matrix  can be written in terms of vector of 

tttt PPAP ++−= −− 112

tttt PPIAP ++−= −− 211 )(
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adjustment parameters  and matrix of cointegration vectors ’ 

given by Eq 29: 
 

    𝛱 =   𝛼 𝛽′ , where 𝛽′𝑃𝑡   is 𝐼(0)                                 (29)      

     

where  is a (N,r) matrix with r < N, and ’ has r cointegration 

vectors such that 0 < r < N as to highlight the VECM model. If 

this is applied for N = 5 as for this study. It results in Eq 30: 

 

[
 
 
 
 
Δ𝑃1𝑡

Δ𝑃2𝑡

Δ𝑃3𝑡

Δ𝑃4𝑡

Δ𝑃5𝑡]
 
 
 
 

= −

[
 
 
 
 
𝑎16  𝑎17  𝑎18  𝑎19  𝑎110

𝑎26  𝑎27  𝑎28  𝑎29  𝑎210

𝑎36  𝑎37  𝑎38  𝑎39  𝑎310

𝑎46  𝑎47  𝑎48  𝑎49  𝑎410

𝑎56  𝑎57  𝑎58  𝑎59  𝑎510]
 
 
 
 

[
 
 
 
 
Δ𝑃1𝑡−1 
Δ𝑃2𝑡−1

Δ𝑃3𝑡−1

Δ𝑃4𝑡−1

Δ𝑃5𝑡−1 ]
 
 
 
 

+

[
 
 
 
 
𝑎11  𝑎12  
𝑎21  𝑎22  
𝑎31  𝑎32 
𝑎41  𝑎42  
𝑎51  𝑎52  ]

 
 
 
 

[
β11    β12  β13  β14  β15

β21    β22  β23  β24  β25
]

[
 
 
 
 
𝑃1𝑡−1 
𝑃2𝑡−1

𝑃3𝑡−1

𝑃4𝑡−1

𝑃5𝑡−1 ]
 
 
 
 

+

[
 
 
 
 
ϵ1t

ϵ2𝑡

ϵ3𝑡

ϵ4𝑡

ϵ5𝑡]
 
 
 
 

                      (30) 

 

To estimate a VECM model, the matrix rank must be equal to r, 

meaning that  has r non zero Eigen values and thus ’. 

 

The Johansen test and estimation strategy which is a maximum 

likelihood test makes it possible to estimate all cointegrating 

vectors for N variables, which all have unit roots and there are at 

most N-1cointegrating vectors. The Johansen test provides 

estimates of all cointegrating vectors if cointegration relationship 

does exist, and a rank test is useful. Thereby, if: 

 

- Rank () = 0, then r = 0 meaning that none cointegration 

relationship and VECM cannot be applied, 

- Rank () = r, and meaning that variables are cointegrated 

and the number of cointegration relationship is equal to r. 

VECM model can be estimated. 

- Rank () = N, meaning that none cointegration relationship. 

 
Johansen procedure is based on the maximum Eigenvalue and 

Trace tests that are conducted on the error correction model 

foundation. For both test statistics, the initial Johansen test is a 
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null hypothesis test of no cointegration against the alternative of 

cointegration.  

 

The first test of maximum Eigenvalues is to determine whether 

the rank of the matrix is zero, and the null hypothesis is rank () 

= 0 whereas the alternative hypothesis is rank () = 1. 

 

The second test of Trace is to determine whether the rank of the 

matrix is r0, the null hypothesis is rank () = r0 and the 

alternative hypothesis is that r0 < rank ()  r, where r is the 

maximum number of possible cointegration vectors.  

 

The Johansen technique described in this section is basic and 

further discussions or more technical details are beyond the 

scope of this paper. Interested readers can consult literatures 

[47−49]. 

 

The Johansen test that will be conducted in the following 

sections is summarized below in five steps. 

 

- Step 1: Performing series stationarity (correlogram & ADF) 

tests to determine whether there is cointegration relationship 

or not. 

- Step 2: If step1 is true, meaning that series are of the same 

order of integration and cointegration is likely, therefore 

VECM model can be estimated. Determining the lag length 

using Akaike and Schwarz criteria. 

- Step 3: Implementing the Johansen test to determine the 

amount of cointegration relationships. 

- Step 4: Identifying the cointegration relationships or long-

term relationships between variables. 

- Step 5: Estimating the VECM model by maximum 

likelihood method, test validations by visual diagnostic or 

correlogram, and checking that residuals from the model are 

white noise. 

 

Applying Johansen Tests to Experimental Data  
 

Data that is used for this study comes from a building-mounted 

PV plant designed for a grid connected system.  Inclined at 21°, 
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which is Reunion Island latitude, for optimal energy extraction, 

the modules that make up the PV plant are polycrystalline type 

of 180 W each, equipped with solar, temperature and wind 

sensors. For this study, the sample of one-year daily mean data 

of year 2012, with 365 observations, is retrieved among 7 years 

of measurements from the COREX building, located at La 

Possession in the west coast of the island. The determined 

cointegrating relationship is then applied and compared to other 

data in real conditions for the years 2013 to 2018. With a 10-

minute sampling step, this represents more than 17,000 data per 

year. This cointegration relationship is also applied to the second 

half of year 2019 to make the PV output prediction. The 

following notations are used for each variable:  POWER, IRRA, 

TEMP, WIND, and HUMI. 

 

Visual Diagnostic of Stationary Series of the 5 Variables  
 

As mentioned in step 1, the following Figures 5(a) and (b) show 

the correlograms of non-stationary series of Power and Irra 

(irradiation) at level as explained in section 3.2.3. Similar figures 

for other variables at level such as Temp, Wind and Humi 

(humidity) are given in appendix 1. The autocorrelation 

coefficient starts at a high value and declines very slowly toward 

zero as the lag increases the autocorrelation coefficients at 

various lags are high even up to lag 26 for correlograms. The last 

values in the Q-stat columns are significant indicating serial 

correlation in the residuals. More precisely, if we consider that at 

level each series is a non-stationary series as a visual diagnostic. 

 

Figures 6(a) and (b) show stationary series of first difference of 

variable Power and Irra, as the spikes are beyond the vertical line 

of the autocorrelation column, except for the first value, which 

means that we have to consider the first lag as it will be indicated 

by the ADF test. These correlograms seem to indicate white 

noise time series. Similar diagrams of first difference of 

variables Temp, Wind & Humi are shown in appendix 2.  
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Figure 5: (a) POWER correlogram at level; (b) IRRA correlogram at level. 
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Figure 6: (a) POWER correlogram at first difference; (b) IRRA correlogram at 

first difference. 
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Augmented Dickey Fuller Test of the 5 Variables  
 

The ADF test is applied to verify the null hypothesis of whether 

there is a unit root in a time series as explained in section 3.2.2. 

In this section, only the stationary outcome of each series is 

displayed and the header portion of each Table 6 (a) and (b) 

indicates the null hypothesis test for Power and IRRA and is 

rejected if the ADF t-statistic value is less at 5% significant 

level. Similar figures of the ADF test at first difference for other 

variables of Temp, Wind and Humi are indicated in appendix 3. 
 

Table 6: (a) First difference of power. 

 
Null Hypothesis: D(POWER) has a unit root 

  

Exogenous: None 
    

Lag length: 7 (Automatic-based on SIC, maxlag = 16) 
 

    
t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic −12,51960 0.0000 

Test critical values 1% level 
 

−2,571643 
 

  
5% level 

 
−1,941740 

 

  
10% level 

 
−1,616087 

 

 

Table 6: (b) First difference of irradiance. 
 

Null Hypothesis: D(IRRA) has a unit root 
  

Exogenous: None 
    

Lag length: 7 (Automatic-based on SIC, maxlag = 16) 
 

    
t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic −12,70921 0.0000 

Test critical values 1% level 
 

−2,571643 
 

  
5% level 

 
−1,941740 

 

  
10% level 

 
−1,616087 

 

 

As all series are of the same order of integration that is I(1), 

cointegration is probable (OR expected). Therefore, VECM 

model can be estimated. The next section goes to step 2. 
 

Lag Length Determination  
 

As indicated in section 3.2.7(d), the AIC and SC are used to 

determine the lag length. As a reminder, lower is AIC value, 

better is the model. To determine the lag length, it is assumed 

that variables are not cointegrated, and the unrestricted vector 

auto-regression is processed under the Eviews software with a 

corresponding number of lags. The outcome for lag 1, that is p = 

1, is indicated in Table 7(a) and (b). 
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Table 7: (a) First part of the VAR result. 

  
Power IRRA TEMP HUMI WIND 

POWER(-1) 0.138750 −0.000269 0.000471 4.33E-06 −1.18E-05  
(0.34297) (0.01845) (0.00053) (6.9E-06) (8.3E-05)  
[0.40456] [−0.01457] [0.89419] [0.62533] [−0.14099] 

IRRA(-1) 3.792247 0.391502 −0.011122 −9.36E-05 0.001265  
(6.65388) (0.35798) (0.011122) (0.00013) (0.00162)  
[0.56993] [1.09363] [-1.08825] [-0.69673] [0.78154] 

TEMP(-1) 24.43531 −0.004351 0.507372 0.001161 −0.032680  
(73.5611) (3.95764) (0.11299) (0.00148) (0.01790)  
[0.33218] [−0.00110] [4.49021] [0.78181] [−1.82579] 

HUMI(-1) 2617.939 120.9769 6.474258 0.627388 0.822792  
(2120.54) (114.086) (3.25701) (0.04280) (0.51597)  
[1.23456] [1.06040] [1.98779] [14.6579] [1.59466] 

WIND(-1) 359.7670 23.23764 0.592929 −0.003879 0.422704  
(198.714) (10.6910) (0.30521) (0.00401) (0.04835)  
[1.81048] [2.17358] [1.94268] [−0.96722] [8.74240] 

C 1901.391 138.9732 14.75872 0.229401 1.655465  
(2202.29) (118.485) (3.38257) (0.04445) (0.53586)  
[0.86337] [1.17292] [4.36317] [5.16061] [3.08936] 

R-squared 0.1666062 0.175396 0.230779 0.428917 0.199223 

Adj.R-squared 0.154317 0.163782 0.219945 0.420874 0.187944 

Continued on next page  
Power IRRA TEMP HUMI WIND 

Sum sq.resids 2.63E + 09 7616334 6207.477 1.072036 155.7846 

S.E equation 2722.517 146.4734 4.181609 0.054953 0.662442 

F-statistic 14.13824 15.10190 21.30117 53.32521 17.66386 

Log likelihood −3364.473 −2309.462 −1025.693 538.1501 −360.5440 

Akaike AIC 18.67298 12.82805 5.715750 −2.948200 2.030714 

Schwarz SC 18.73762 12.89268 5.780385 −2.883565 2.095350 

Mean dependent 8530.460 458.3989 39.97784 0.69945 2.43440 

S.D dependent 2960.511 160.1766 4.734572 0.072211 0.735115 
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Table 7: (b) Second part of the VAR result. 

 

Determinant resid covariance (dof adj.) 13270892 

Determinant resid covariance 12204103 

Log likelihood −5506.454 

Akaike information criterion 30.67287 

Schwarz criterion 30.99605 

 

The AIC value indicated in Table 7(a) is for each system. For 

Power as the dependent variable, the corresponding AIC is 

18.67, whereas in Table 7(b), the value of the AIC is for the 

whole VAR system and this is the chosen one. For the test with 

lag = 2, AIC value of the system is greater than for p = 1. The 

result obtained is not represented here. In Table 7(a), it can be 

noted that values in brackets ‘()’ are standard errors while values 

in square brackets ‘[ ]’ are the corresponding t-statistic value. 

Table 8 shows the result obtained for another test that confirms 

the order determination by comparing various criteria. 

 
Table 8: Different lag criteria. 

 
Lag LogL LR FPE AIC SC HQ 

0 −5748.302 NA 47911324 31.87425 31.92811 31.89566 

1 −5506.454 475.6570* 14411011* 30.67287* 30.99605* 30.80136* 

 

The star “*” indicates the lag order selected by the following 

criterion and their corresponding definition: LR is the likelihood 

ratio, FPE is final prediction error and HQ is the Hannan-Quinn 

criterion. Therefore, the lag length for p = 1 will be used from 

now on in this study.  The next section goes to step 3. 

 

Determining of the Number of Cointegration 

Relationships  

 
As explained in section 4.2, the number of cointegration 

relationships is based on both the Trace and the Eigen value 

tests. This is reported in two blocks through Eviews software, 

denoted the Trace statistics and the maximum Eigenvalue 

statistics, respectively. For this study, this test is performed with 
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the deterministic trend assumption, which means that there is no 

intercept or trend in the cointegration equation or VAR test. The 

two outcome blocks of this test through Eviews are indicated in 

Table 9 (a) and (b). In Table 9 (a), the header portion indicates 

the concerning series with the lag length equal to one and no 

deterministic trend.  The columns of each block are as follows. 

The first column is the number of cointegration relations under 

the null hypothesis. The second column is the ordered 

Eigenvalues of the  matrix as explained in section 4.2. The 

third column is the test statistic and the fourth column is the 5% 

critical value. The Trace test indicates 4 cointegration equations 

at 5% significant level as the probability value is nearly 47% and 

greater than 5%. The star “*” denotes rejection of the hypothesis 

at 5% level. Therefore, all variables such POWER, IRRA, 

TEMP, level of HUMI and SWIND are linked by a long run 

relationship.  
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Table 9: (a) Cointegration Trace test. 

 
Trend assumption: No deterministic trend 

  

Series: POWER IRRA TEMP level of HUMI WIND 

  

Lags interval ( in first differences): 1 to 1 

  

Unrestricted Cointegration Rank Test (Trace) 

  

Hypothesized EigenValue Trace Statistic 0.05 Crititical Value Prob.** 

No. of CE(s) 

None* 0.304862 371.9636 60.06141 0.0001 

At most 1* 0.245336 241.7790 40.17493 0.0001 

At most 2* 0.207530 141.0082 24.27596 0.0001 

At most 3* 0.147316 57.73709 12.32090 0.0000 

At most 4 0.001909 0.684013 4.129906 0.4677 

 

Table 9: (b) Cointegration Eigenvalue test. 

 

Unrestricted Cointegration Rank Test (Maximum Eigen 

Values) 

 

Hypothesized EigenValue Max-Eigen 

Statistic 

0.05 Crititical 

Value 

Prob.** 

No. of CE(s) 

None* 0.304862 130.1847 30.43961 0.0001 

At most 1* 0.245336 100.7708 24.15921 0.0001 

At most 2* 0.207530 83.27109 17.79730 0.0001 

At most 3* 0.147316 57.05307 11.22480 0.0000 

At most 4 0.001909 0.684013 4.129906 0.4677 
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In Table 9(b), the maximum eigenvalue test indicates four 

equations at 5% level. The outcome of this test is in line with 

what is indicated in section 5.1.The Johansen VECM test is then 

performed through Eviews with one lagged. The final outcome is 

given in Table 10 (a),(b) and (c). The entire Eq 26 in section 5.1 

can be deduced from Table 10. The target model D (POWER) 

which is the dependent variable given in Eq 31 (a) (b), (c) 

between Table 10a & c. D (POWER) is identified as P. 

 

Δ 𝑃 =  −0.738 𝐶𝑜𝑖𝑛𝑡𝐸𝑞1 + 2.76 𝐶𝑜𝑖𝑛𝑡𝐸𝑞2 +
29.00 𝐶𝑜𝑖𝑛𝑡𝐸𝑞3 + 3493.349 𝐶𝑜𝑖𝑛𝑡𝐸𝑞4 + 𝜀𝑖𝑡                         (a) 

 
 𝑃 − 0.738 (𝑃𝑂𝑊𝐸𝑅𝑡−1 − 3521,54𝑊𝐼𝑁𝐷𝑡−1) + 2.764( 𝐼𝑅𝑅𝐴𝑡−1 −
189,05) +       29.004(𝑇𝐸𝑀𝑃𝑡−1 − 16.52𝑊𝐼𝑁𝐷𝑡−1) +

3493.349 (𝐻𝑈𝑀𝐼𝑡−1 − 0.289𝑊𝐼𝑁𝐷𝑡−1) +  𝜀1𝑡                           (b)            

                                     (31) 

 

𝑃𝑡  =   833.33 𝑊𝐼𝑁𝐷𝑡  + 3.74 𝐼𝑅𝑅𝐴𝑡  +  36.38 𝑇𝐸𝑀𝑃𝑡 +
4758.96𝐻𝑈𝑀𝐼𝑡 + 𝜀1𝑡                (c) 

 

Eq 31(c) is the long-term relationship as each variable at (t−1) is 

equal to each variable at t. 

 

It should be noted that Eq 31(c) is determined with one outlier in 

square brackets ‘[ ]’ removed from the number of observations. 

An outlier may be defined as an observation with a large residual 

that represents the difference (positive or negative) between the 

actual value and the estimated value from the regression model. 

When the residual is large, it is in comparison with the other 

residuals. Usually, a large residual catches attention because of 

its rather large vertical distance from the estimated regression 

line. The relationship of P is deduced from Table 10(c) using 

the error correction model where the values in brackets ‘()’ is the 

standard error, and the values in square brackets ‘[ ]’ is the t 

statistic value. There is no probability value to determine 

whether each coefficient is significant. 
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Table 10: (a) The four cointegration equations. 

 
Cointegration Eq: CointEq1 CointEq2 CointEq3 CointEq4 

POWER(−1) 1.000000 0.000000 0.000000 0.000000 

IRRA(−1) 0.000000 1.000000 0.000000 0.000000 

TEMP(−1) 0.000000 0.000000 1.000000 0.000000 

HUMI(−1) 0.000000 0.000000 0.000000 1.000000 

WIND(−1) −352.536 −189.0507 −16.52614 −0.289727  
(115.133) (6.10357) (0.43571) (0.00856)  
[−30.5867] [−30.9738] [−37.9295] [−33.8617] 

 
Table 10: (b) The error correction coefficients. 

 
Error Correction D(POWER) D(IRRA) D(TEMP) D(HUMI) D(WIND) 

CointEq1 −0.738061 0.003671 0.000668 −6.30E−06 −0.000101  
(0.44968) (0.02418) (0.00069) (9.4E−06) (0.00011)  
[−1.64130] [0.15180] [0.96372] [−0.66729] [−0.90932] 

CointEq2 2.764963 −0.633466 −0.020299 −6.30E−06 0.001919  
(8.49770) (0.45697) (0.01309) (0.00018) (0.00211)  
[0.32538] [−1.38624] [-1.55056] [−0.35314] [0.91023] 

CointEq3 29.00405 1.202475 −0.168783 0.007478 0.014007  
(57.8867) (3.11288) (0.08918) (0.00122) (0.56441)  
[0.50105] [0.38629] [−1.89266] [6.15305] [0.97515] 

CointEq4 3493.349 170.2571 10.64644 −0.318148 1.006675  
(2274.49) (122.312) (3.50397) (0.04776) (0.56441)  
[1.53588] [1.39200] [3.03840] [−6.66201] [1.78360] 

D(POWER(−1)) −0.061329 0.000548 −0.000373 8.67E−06 0.000102  
(0.34563) (0.01859 (0.00053) (7.3E−06) (8.6E−05)  
[−0.17744] [0.02947] [−0.70012] [1.19434] [1.18555] 

D(IRRA(-1)) −0.385590 −0.119264 0.009972 −4.70E-05 −0.001840  
(6.98093) (0.37540) (0.01075) (0;00015) (0.00173)  
[−0.05523] [−0.31770] [0.92728] [−0.32055] [−1.06198] 

D(TEMP(-1)) −41.98734 −1.471655 −0.312499 −0.004109 −0.012250  
(79.2692) (4.26273) (0.12212) (0.00166) (0.01967)  
[−0.52968] [−0.34524] [−2.55899] [−2.46904] [−0.62278] 

Continued on next page 

Error Correction D(POWER) D(IRRA) D(TEMP) D(HUMI) D(WIND) 

D(HUMI(-1)) −2443.284 −91.71841 −4.715188 −0.009332 0.646033  
(2670.53) (143.609) (4.11409) (0.05607) (0.66268)  
[-0.52968] [−0.63867] [−1.14611] [−0.16643] [0.97487] 

D(WIND(-1)) −388.2601 −22.43381 −0.629913 −0.003435 −0.025043  
(219.111) (11.7828) (0.33755) (0.00460) (0.05437)  
[−1.77198] [−1.90395] [−1.86612] [−0.74676] [−0.46059] 
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Table 10: (c) Statistical data of the outcome with the AIC. 

 
R-squared 0.339711 0.335370 0.313075 0.152640 0.280574 

Adj.R-Squared 0.324575 0.320135 0.297329 0.133216 0.264083 

Sum sq.resids 2.54E+09 7335040 6019.884 1.118186 156.1900 

S.E equation 2695.906 144.9735 4.153186 0.0566604 0.668981 

F-statistic 22.44456 22.01305 19.88265 7.858403 17.01326 

Log likelihood −3331.440 -2285.028 −1013.170 524.6397 −359.5067 

Akaike AIC 18.66167 12.81580 5.710447 −2.880669 2.058697 

Schwarz SC 18.75923 12.91335 5;808002 −2.783113 2.156252 

Mean dependent −24.29050 −1.402235 −0.064246 −0.000726 −0.002601 

S.D dependent 3280.321 175.8236 4.954562 0.060789 0.779829 

Determinant resid covariance (dof adj) 14268562 
  

Determinant resid covariance  
 

12562967 
  

Log likelihood 
  

−5465.881 
  

Akaike information criterion 30.89878 
  

Schwarz criterion 
  

31.60334 
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This is done by using system equations through Eviews, where 

the residual of the cointegration equation can be derived when D 

(POWER) is the dependent variable. This allowed to determine 

the residual of the cointegration equation as given in Eq 32: 

 

∆ 𝑃 = 𝐶(1) ∗ (𝑃𝑂𝑊𝐸𝑅(−1) − 3526.23 𝑊𝐼𝑁𝐷(−1) + 𝐶(2) ∗
𝐼𝑅𝑅𝐴(−1) − 189.36 ∗ 𝑊𝐼𝑁𝐷(−1) + 𝐶(3) ∗ (𝑇𝐸𝑀𝑃(−1) −
16.44 ∗ 𝑊𝐼𝑁𝐷(−1) + 𝐶(4) ∗ ( 𝐻𝑈𝑀𝐼(−1) − 0.2869 ∗

𝑊𝐼𝑁𝐷(−1)) + 𝐶(5) ∗  𝐷(𝑃𝑂𝑊𝐸𝑅(−1)) + 𝐶(6) ∗

𝐷(𝐼𝑅𝑅𝐴(−1) + 𝐶(7) ∗ 𝐷(𝑇𝐸𝑀𝑃(−1)) + 𝐶(8) ∗

𝐷(𝐻𝑈𝑀𝐼(−1)) + 𝐶(9) ∗ 𝐷(𝑊𝐼𝑁𝐷(−1))                     (32)                                 

 

The probability of each coefficient C (1) to C (9) is given in 

Table 11. 

 
Table 11: Cointegration coefficient with the corresponding probability. 

  
Coefficient Std.Error t-Statitic Prob. 

C(1) −0.732626 0.450017 −1.627997 0.1044 

C(2) 2.741201 8.504443 0.322326 0.7474 

C(3) 26.67434 57.90265 0.460676 0.6453 

C(4) 3488.323 2276.294 1.532457 0.1263 

C(5) −0.049931 0.345787 −0.144399 0.8853 

C(6) −0.639548 6.983515 −0.091580 0.9271 

Continued on next page 
 

Coefficient Std.Error t-Statitic Prob. 

C(7) −43.51793 79.32281 −0.548618 0.5836 

C(8) −2442.330 2672.656 −0.913822 0.3614 

C(9) −349.8633 217.1123 −1.611440 0.1080 

 

From sections 4 and 5, the coefficient of C(1) which is the speed 

of adjustment towards the long run relationship,  must be of 

negative sign and statistically significant whereas coefficients 

from C(2) to C(9) are short run coefficients. Negative implies a 

departure in one direction. The correction would have to pull 

back to the other direction. In this case, this is satisfying for the 

model as it implies that the model is converging in the long-run 
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equilibrium. To test the short run causality, the Wald test was 

performed as given in the next section. 

 

Wald Test  
 

The Wald statistic test is a joint test for short run coefficients and 

the null hypothesis is that all short run coefficients are jointly 

zero. In this case C (2) = … C (9) = 0. This is given in Table 12, 

where probability of the chi-square value as explained in section 

3.2.7, is greater than 5% significant level, meaning that there is 

no short-run relationship as all coefficients C(2) to C(9) are zero. 

The null hypothesis cannot be rejected. 

 
Table 12: Wald statistic test for short-run equilibrium. 

 
Wald Test 

   

Equation: Untitled 
   

Test Statistic Value df Probability 

F-statistic 1.932705 (5,355) 0.0882 

Chi-square 9.663527 5 0.0854 

 

Lagrange Multiplier Test and Jarque Bera Statistic  

 
The long run relationship of Eq 31(c) is significant. However, 

the residual property of white noise needs to be tested. This is 

verified using the LM test as described in section 3.2.5, and the 

outcome is given in Table 13. 

 
Table 13: LM test of serial correlation. 

 
Breush-Godfrey Serial Correlation LM Test 

 

F-Statistic 0.008380 Prob.F(1,341) 0.9271 

Obs*R-squared 0.008847 Prob.Chi-Square(1) 0.9251 

 

The observed R squared and the corresponding probability which 

is greater than 5% significant level mean that the null hypothesis 

can be rejected, and the AR model has serial correlation. To see 

if the residual is normally distributed, the Jarque Bera statistic is 

applied as displayed in Figure 7.  
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Figure 7: Jarque Bera residual normal distribution. 
 

As explained in section 3.2.6, the Jarque Bera coefficient is very 

significant due to the large number of observations, and the bell 

shape indicates that the residual follows a normal distribution. 

The obtained model outcome is good. The stability diagnostic 

needs to be tested to make sure that the model is dynamically 

stable. For this purpose, the CUSUM test is performed. 
 

The CUSUM Test  
 

The CUSUM test (Durbin Test) is based on the cumulative sum 

of the recursive residuals. It plots the cumulative sum together 

with the 5% critical lines. The test attains parameter stability if 

the cumulative sum goes inside the area between the two critical 

lines. In Figure 8, the blue curve, also known as the trade line, 

lies between the red boundaries. Therefore the model is set to be 

dynamically stable. 

 

 
 

Figure 8: The CUSUM test. 
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The residual is a random or white noise process. The final long 

run relationship of this study linking the environmental 

parameters to the power output in a tropical zone is given in Eq 

33: 

 

   𝑃𝑡  =   833.33 ∗ 𝑊𝐼𝑁𝐷𝑡  + 3.74 ∗ 𝐼𝑅𝑅𝐴𝑡  +  36.38 ∗
 𝑇𝐸𝑀𝑃𝑡 + 4758.96 ∗ 𝐻𝑈𝑀𝐼𝑡                                  (33) 

 

This equation is then applied for several years of data, and the 

outcome is compared to real data. This is given is the next 

section. 

 

Experimental Results  
 

We used the model cointegration regression of Eq 33 determined 

from year 2012 to calculate the power output for each year of 

2013, 2014 and 2016. The goal was to design a model from data 

of year 2012 and trying to forecast the power output from the 

model for the following years. Then, we compared each year 

Johansen cointegration power output to the measured power 

output in real conditions of the corresponding year. Figure 

9(a),(b),(c) represent the plot of each year with the 

corresponding R² value. The year sample time is 10 minutes 

giving more than 17,000 values per year. 

 

 
 

Figure 9: (a) Comparing model power output to measured power for year 

2013. 
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Figure 9: (b) Comparing Model Power output to measured Power for year 

2014. 

 

 
 
Figure 9: (c) Comparing Model Power output to measured Power for year 

2016. 

 

The accuracy of the fit for a regression model is characterized by 

the coefficient of determination R² or Pearson’s correlation 

coefficient [50]. It shows how correlated the forecasted and real 

values are. Applying the Johansen cointegration equation to the 

different years, it can be observed that R² is between nearly 65% 

and 74%. The R² value could have been better but the data has 

been randomly chosen. Some data are far from the regression 
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lines as in Figure 9(b) and (c), but can be explained by the fact 

that these data were related to a few days before and after a 

storm period.  

 

We then applied the Johansen cointegration model for a long-

term forecasting that is multiple days ahead. This is represented 

in Figure 10, where the yellow and blue colors of the bar chart 

are respectively for the measured power output and Johansen 

model power output. The x axis is the day number of a particular 

month. For this test, we used the month of January 2016. 

 

 
Figure 10: Comparing multiple days for long term forecasting. 

The values below the bar chart diagram are real power output (yellow series) 

and model power output (blue series). 

 

We also applied the test for an immediate-short-term forecasting 

that is hours ahead. This is represented in the bar chart diagram 

of Figure 11. The blue bar chart (series 1) is the measured power 

output and the orange one (series 2) is the Johansen cointegration 

power output model. The horizontal axis is an hourly interval of 

a particular day. For this test we have used data of 11th April 

2014 from 9 a.m. to 5 p.m. 

 

 
 

Figure 11: Comparing an hourly interval for immediate short-term forecasting. 
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This is a promising model which obviously need to be improved 

nothing when comparing the bar chart diagrams at various time 

interval forecasting.  

 

Discussion  
 

The Johansen cointegration principle is an appropriate applied 

method to determine the cointegration relationship between PV 

output and environmental parameters such as solar irradiation, 

module temperature, wind speed and relative humidity. 

 

The present work focuses on the methodology used for 

developing the forecasting method and therefore does not 

address more general questions such as the precise sensitivity of 

the environmental factors, the effect of a very long (multiple 

years) training data or the quantitative comparison with other 

similar researches. Nevertheless, the following observations can 

be drawn from this study: 

 

• Indeed, it provides more efficient estimators and can also be 

carried out when distributions of residuals are not normal 

and heteroscedastic.  

• The weakness of the Johansen approach is that it is sensitive 

to the lag length. This last one has been determined in a 

systematic and accurate manner to make the technique 

perfectly reliable.  

• The Johansen cointegration relationship is determined from 

data of a specific year, and the outcome has been applied and 

compared to other years of data under real conditions. Like 

all the current statistical methods of solar photovoltaic 

generation forecast, it uses past meteorological parameters, 

hourly irradiance and hourly PV power output to reconstruct 

the relationship, which means that it is severely dependent of 

in-site data and requires a sufficient of past measures to be 

more precise.  

• This multiple linear regression between PV power output 

and the four chosen environmental parameters has a 

prediction accuracy for the following years between 65% 

and 74% (Figures 9(a)–9(c)). The precision is not as high as 

we expected but can be explained by the fact that this model 
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is a regression model which as we know is better suited for 

short-term or medium-term forecast and not long-term 

forecast. However, the performance accuracy is higher since 

we deal with short term forecast (Figure 11). Its performance 

is hardly comparable as it is to Machine Learning (ML) or 

deep learning models such as Artificial Neural Networks 

(ANN) or Support Vector Machine (SVM) which are widely 

use nowadays but by building a hybrid model combining the 

Johansen cointegration principle and a Machine Learning 

technique the model’s performance can be widely improved.  

• In this research, the four environment factors namely solar 

irradiation, module temperature, wind speed and relative 

humidity were chosen because their data were available from 

various sensors on site. Solar irradiation and cell temperature 

are the two most sensitive factors in the PV power 

generation. 

 
The main goal is this paper was to propose an original statistical 

approach that can estimate and forecast PV generation based on 

meteorological parameters in a tropical island such as Reunion 

Island. 

 

Conclusion and perspectives  
 

Johansen cointegration principle has been applied to non-

stationary economic variables for cointegration analysis of 

equilibrium relationships, but has never been applied to 

renewable energy domain. The determined model is free from 

serial correlation or heteroscedasticity and it can then be used for 

forecasting. The outcomes show that the Johansen test is an 

appropriate applied model able to build a cointegration 

relationship between PV output generation and meteorological 

parameters such as solar radiation, module temperature, wind 

speed and humidity. This promising model is only at the 

beginning of a new facet of research with multidisciplinary 

competence in this field.  

 

In future research works, the cointegration equation determined 

in this paper requires improvement by additional robust 

statistical methods and more robust residual tests, including 
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additional environmental parameters such as ambient 

temperature, dust, as well as physical effects of air convention, 

heat transfer by conduction and radiation to PV technology. The 

resulting cointegration equation should then be applied to a 

residential area where the consumption profile of residents is 

known, in order to integrate other back up energy systems such 

as wind turbines, fuel cells, biomass to move towards smart 

buildings.  

 

A thorough benchmarking of statistical multiple linear and non-

linear regression in order to forecast PV power generation will 

be proposed in a future work for the sake of comparing this 

proposed method with several statistical regression forecast 

models, according to some objective criterion. In order to 

characterize the quality of the forecasts of each of these models, 

commonly used error metrics such as: Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Mean Bias Error (MBE) 

or their relative counterparts (rRMSE, RMAE, rMBE) will be 

applied. 

 

The evaluation of the performance of the final model did not 

consider possible interactions among independent variables or 

even powered variables. In the next paper, these interactions will 

be discussed. 

 

This regression model as it is does not possess evolutionary 

techniques such as heuristics and artificial intelligence (neural 

networks, etc.). A future work will tackle this problem by 

building a hybrid model combining the Johansen cointegration 

principle and a Machine Learning technique and therefore will 

be able to consider more accurately the climate variability and 

climate change effect.   

 

From the perspective side in a near future, the mathematical 

aspects behind the statistical theories will be computed in line 

code using Python 3.7 and integrated on an FPGA chip in order 

to be applied at minute sampling time to make accurate daily 

prediction. The whole process should be identified as the RTF 

(Ramenah-Tanougast-Fanchette) respectively for physical 

aspects, statistical technique, FPGA implementation and 
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artificial intelligence for predictive principle of energy systems 

to smart building and smart city. The international University of 

Mascareignes of Republic of Mauritius in the Indian Ocean has 

been approached in order to perform the final test. 
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Appendix 1 

 

 

 
 

Figure 5: (c) TEMP correlogram at level; (d) WIND correlogram at level. 
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Figure 5: (e) Level of HUMI correlogram at level. 
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Appendix 2 
 

 
 

Figure 6: (c) TEMP correlogram at first difference; Figure 6: (d) WIND 

correlogram at first difference. 
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Figure 6: (e) Level of HUMI correlogram at first difference. 

 

Appendix 3 
 

 
 

Figure 11: (c) First difference of temperature. 
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Figure 11: (d) First difference of wind speed. 

 

 
 

Figure 11: (e) First difference of wind speed. 


