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Abstract  
 
This paper deals with elliptical trajectory planning with vertical 

straight-line segments for pick-and-place robot operation with 

height clearance. It is significant for trajectory planning for the 

pick-and-place operation with the different height clearance 

between the picking point and placing point, or with the height 

clearance for picking and placing the product in the box. In this 

paper, we propose an optimal asymmetric bisected elliptical path 

with two vertical straight line segments and a method to generate 

motion profile suited to geometry of the optimal asymmetric 

bisected elliptical path based on radius of curvature. The 

simulation result demonstrates that the proposed trajectory 

planning approach enables to reduce workspace and cycle period 

of pick-and-place operation by minimizing the length and height 

of the path, and guarantees continuity and smoothness of 

velocity, acceleration and jerk, and results in smoothness of 

working action of robot actuators. 
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Introduction  
 

Trajectory planning is one of the most important problems in 

robotics. It refers to generate position commands, velocity and 

acceleration of all degrees of freedom of the robot [1]. It 

involves establishing the movement of a manipulator from the 

initial position to the final position and defining the geometric 

path and the motion law [2]. The capability and efficiency of 

high-speed pick-and-place parallel robots requires an effective 

trajectory planning for taking an excellent performance from the 

viewpoint of smoother joint torque, lower residual vibration and 

shorter cycle time [3]. The pick-and-place trajectory planning 

problem is finding a smooth and continuous trajectory from a 

starting position to a desired terminal position within the 

workspace of the robot. 

 

Many studies have been conducted for effective trajectory 

planning of robot. Gosselin et al. [4] used a ninth-order 

polynomial for a single motion profile to guarantee C3-

continuity by inserting a lift-off and a set-down point. Piazzi and 

Visioli [5] conducted the optimization of global minimum-jerk 

trajectory planning of robot manipulators using interval analysis. 

Constantinescu et al. [6] proposed a method for minimum time 

trajectory planning subject to the limits imposed upon the joint 

torques and their first derivatives. Chettibi et al. [7] proposed 

minimum cost trajectory planning algorithm for robotic 

manipulators using sequential quadratic programming method. 

Gasparetto et al. [8] used quintic B-spline for the interpolation to 

generate smooth joint trajectories. Gasparetto et al. [9] proposed 

time-jerk optimal planning method for robot trajectories by using 

sequential quadratic programming techniques in order to get the 

optimal trajectory. Gauthier et al. [10] used Lamé curves with 

G2-continuity at the square corners linked the vertical segment 

and horizontal one, and applied ‘4-5-6-7 polynomial’ with C3-

continuity as the motion profile. The trajectory was generated to 
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minimize the root of mean square of the time-derivative of the 

kinetic energy per unit mass of the payload. Saravanan et al. [11] 

proposed evolutional theory based method for optimal trajectory 

planning using uniform cubic B-splines. Ramabalan et al. [12] 

proposed two efficient evolutionary optimization techniques 

such as NSGA-II and MODE for doing off-line tridimensional 

optimal trajectory planning of the industrial robot manipulators 

in the presence of fixed obstacles. Gasparetto et al. [13] proposed 

an algorithm for optimal smooth trajectory planning by 

minimizing, subject to limits on joint velocity, acceleration and 

jerk, a weighted sum of the integral of joint jerk squared and the 

total cycle time. Rossi et al. [2] proposed a method for the robot 

trajectory planning, which consisted in controlling a manipulator 

by assigning not only the way points on the path but also the 

geometrical tangent of the desired path shape at each of those 

points. Liu et al. [14] proposed time-optimal and jerk-continuous 

trajectory planning approach by combining the spline 

interpolating in Cartesian space and B-spline interpolating in 

joint space to gain a high smooth tracking performance in the 

practical motion task. Wang et al. [15] proposed the robot 

trajectory planning model of a tower crane welding robot was 

established based on a Bezier curve method according to the 

time optimal method. Jahanpour et al. [16] proposed a novel 

trajectory planning scheme for parallel machining robot with 4 

(UPS)-PU mechanism by using NURBS curves. Kucuk [17] 

proposed algorithm for optimal trajectory generation to generate 

minimum-time smooth motion trajectories for serial and parallel 

manipulators. Masey et al. [18] proposed bisected ellipse as the 

geometric path such that the arc length along the path was 

approximated as the linear function of two normalized 

parameters including any specified durations of constant velocity 

or degree of asymmetry. Wu et al. [19] proposed the multi-

objective design optimization method of a parallel Schonflies-

motion robot. Zhang et al. [20] studied on the trajectory planning 

and optimization for a Par4 parallel robot based on energy 

consumption in high-speed picking and placing. They used Lamé 

curve in the trajectory planning, and introduced asymmetric 

displacement planning based on the quintic and sextic 

polynomial motion laws to minimize the total mechanical energy 

consumption of the driving joints. They used Grey Wolf 
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Optimizer for optimizing the Lamé curve parameters. Wang et 

al. [21] proposed a smooth point-to-point trajectory planning 

based on high-order polynomial curve for industrial robots with 

kinematical constraints. Wu et al. [22] proposed a novel point-to-

point trajectory planning algorithm based on a locally 

asymmetrical jerk motion profile for the time-optimal and 

smooth joint trajectories of industrial robots. Wu et al. [23] 

proposed a multi-objective (time and jerk) integrated trajectory 

planning method based on improved butterfly optimization 

algorithm to improve the dynamic performance of the Delta 

parallel pickup robot in high-speed pick-and-place processes. 

The pick-and place trajectory of the robot was constructed using 

NURBS curves. Liu et al. [24] proposed four-phase pick-and-

place trajectory planning scheme based on S-shaped 

acceleration/ deceleration algorithm and quintic polynomial 

trajectory planning method of the cable-based gangue-sorting 

robot in the operation space. 

 

The most of the previous works for trajectory planning mainly 

focused to generating the smoother path and motion profile for 

the purpose of smoother joint torque, lower residual vibration, 

jerk continuity and minimization, minimization of cycle period 

and mechanical energy. However, the previous works lack in 

considering the minimization of the workspace, and especially, 

their equations of velocity and acceleration/deceleration contain 

little information of the path, and therefore the equations are no 

direct related to the geometry of the generated path. It is 

desirable that the velocity and acceleration/deceleration 

equations reflect the information of the path and are direct 

related to the path. On the other hand, the paths and motion 

profiles are pre-calculated in the most of the previous methods. It 

may be difficult to calculate those tasks during one cycle period 

of pick-and-place operation in real-time by robot controller. It is 

not suitable to the high-speed pick-and-place operation of the 

moving objects on belts and it becomes the practical limitation of 

the use of the previous trajectory planning methods. 

 

To solve these problems, this paper focuses on developing the 

asymmetric bisect elliptical trajectory planning with minimum 

workspace and trajectory planning approach suited to geometry 
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of the path in real-time for pick-and-place operation in which 

both the picking points and placing points are changed randomly 

in the workspace. 

 

The rest of this paper is organized as follows. In subsection 2.1, 

we propose an optimal asymmetric bisect elliptical path with two 

vertical straight line segments. In subsection 2.2, we propose a 

method to generate optimal asymmetric bisected elliptical path. 

In subsection 2.3, we propose a method to generate the motion 

profile suited to geometry of the optimal elliptical path based on 

radius of curvature. In section 3, we describe the simulation test 

results using the proposed method to demonstrate the 

effectiveness of the proposed method. 

 

Methods  
Optimal Asymmetric Bisected Elliptical Path with Two 

Vertical Straight Line Segments  

 
In this subsection, we propose an optimal asymmetric bisect 

elliptical path with two vertical straight line segments. 

Let P1 and P2 be the initial and final points of the end effector in 

a pick-and-place operation in the reference frame O–xyz. (Figure 

1) The pick-and-place path consists of two vertical straight line 

segments and asymmetric bisected ellipse tangent to these two 

line segments, where φ represents the angle between x-axis and 

the major axis of the ellipse, and T1(-l, -h) and T2(l, h) are two 

tangent points of the bisected ellipse and two vertical line 

segments. 
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Figure 1: Optimal asymmetric bisected elliptical path with two vertical straight 

line segments. 

 

In the local frame O–x1y1z1, the equation of the ellipse is as 

follows: 
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where a and b are the semi-major radius and semi-minor radius 

of the ellipse, respectively. 

 

The relationship between the reference frame O–xyz and the 

local frame O–x1y1z1 can be represented as equation (2). 
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By substituting equation (2a) into equation (1), we have 
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Above equation can be expressed as follows: 

 

Ax2+Bxy+Cy2=1,                                                 (4) 
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Since two points T1(-l, -h) and T2(l, h) are located on the ellipse, 

 

122 =++ ChBlhAl .                                                 (6) 

         

By differentiating both sides of the equation (3) on x, we have 

 

2Ax+By +Bxy'+2Cyy'=0.                                                            (7) 

 

Hence 

CyBx
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y

2
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Since 

 

=
= lx

y | .                                                              (9)                                                                        

        
 

at the points T1(-l, -h) and T2(l, h), we have 

 

Bl+2Ch=0, that is, Bl= -2Ch.                                  (10)                                  
      

 

By Substituting the equation (8) into the equation (3),  

 

Al2-2Ch2+Ch2=1, that is Al2-Ch2=1.                     (11)             

     

From the equation (8), 
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By multiplying above equation by a2b2, we have 
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Above equation can be expressed as follows: 

 

Db2=Ea2, that is, b2=Ea2/D,                      (14) 

     

where 
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By multiplying above equation by a2b2, we have 
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Above equation can be expressed as follows: 

 

Fa2+Gb2= a2b2,                                    (18) 

     

where 
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By substituting the equation (10) into the equation (11),  

 

Fa2+GEa2/D = a2Ea2/D.                                                          (20) 

 

From this equation, we have 
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a2=DF/E+G.                                                             (21) 

       

By substituting the equation (12) into the equation (10), 

 

b2=E/D∙(DF/E+G),                                                                   (22) 

 

that is, 

 

b2= F+EG/D.                                                             (23) 

       

Since D, E, F and G are the functions of φ, it is sure that a and b 

are also the functions of φ, that is, a= a(φ) and b= b(φ) from the 

equations (12) and (13). Hence, A, B and C are also the functions 

of φ, that is, A= A(φ), B= B(φ) and C= C(φ) in the equation (4). 

 

Therefore, when the angle φ is given, the only ellipse satifying 

the equations (5) and (7) is determined as follows: 
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We have to determine the optimal angle φ* so that the length of 

the asymmetric bisected elliptical path is minimum. 

 

The length of the asymmetric bisected elliptical path is equal to 

the perimeter length of the semi-ellipse with semi-major radius a 

and semi-minor radius b. 

 

In general, it is impossible to analytically calculate the perimeter 

length of the semi-ellipse and it can be calculated by numerical 

integration method. In order to calculate it, we develop its 

approximate formula. 

 

Commonly, the following inequality is satisfied about the 

perimeter length L of the semi-ellipse: 
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Therefore, we can derive the approximate formula for the 

perimeter length of the semi-ellipse as follows: 
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To verify its availability, varying a from 5 to 20 and b from 2 to 

20, we calculated the perimeter lengths of the semi-ellipse by 

using both the numerical integration method and the equation 

(16), and then evaluate their mean absolute error and mean 

relative error in MATLAB. As a result, the mean absolute error 

was 0.078, and the mean relative error was 0.231%. It 

demonstrates that the equation (16) could be used to calculate the 

perimeter length of the semi-ellipse, approximately. 

 

Therefore, the optimal asymmetric bisected elliptical path could 

be determined as follows. 

 

Given the values of l and h, it is the asymmetric bisected 

elliptical path with the optimal angle φ* so that the following 

objective function has the minimum value. 
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To intuitively demonstrate the behavior of the objective function 

(17), we calculated the perimeter length L(φ)of the elliptical path 

according to angle φ using the equation (17) by varying the angle 

φ from the critical angle 







)arctan(

180

l

h


° to 60° step 1°, and 

plotted the graph in case of l =0.150 and h=0.025. The result is 

shown in Figure 2. From Figure 2, we can know that the smaller 

the angle φ is, the shorter the elliptical path is. In this case, the 
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optimal angle with minimum length of the elliptical path is 

φ*=10°. 

 

By analyzing the equation (17) and Figure 2, we can know that 

the function is a monotonically increasing curve for angle φ. 

 

 
 
Figure 2: Perimeter length of the elliptical path according to angle φ (°) 

 

Therefore, we can determine the optimal angle φ* with minimum 

length of elliptical path as the critical angle using the following 

equation: 
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where [x] denotes the ceiling number of x. 

 

The optimal semi-major radius a* and semi-minor radius b* are 

calculated using the following equations: 
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b*2=E*/D*∙(D*F*/E*+G*),                                  (31) 

      

where 
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Next, we determine the top point and its height of the optimal 

asymmetric bisected elliptical path. 

 

On the top point of the optimal elliptical path, its derivative y’ 

should be 0. 

 

From the equation (6), the following equation should be 

satisfied: 
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By substituting above equation into the equation (21), we have 
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Therefore, the polar angle according to the top point is as 

follows:  
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The top point T (x*, y*) is as follows: 
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Therefore, the height of the top point is as follows: 

 

H*= | *sincos*cossin  ba + |.                                     (38) 

        

The height of top point determines the working space of the 

robot. The lower the top point is, the smaller the working space 

is. 

 

Method to Generate Optimal Asymmetric Bisected 

Elliptical Path  
 

In this subsection, we propose a method to generate optimal 

asymmetric bisected elliptical path. 

 

The main steps to generate the optimal asymmetric bisected 

elliptical path are as follows: 

 

Step 1: Determine the polar angles θT1 and θT2 corresponding to 

the tangent points T1 and T2 on the elliptical path in the local 

frame O–x1y1z1. 

 

The polar angle θT2 is calculated as follows: 

 

Consider the equation (2a): 

 










+−

+
=













cossin

sincos

1

1

yx

yx

y

x
,                                                     (39) 

 

and the parametric equation of the ellipse: 



Prime Archives in Engineering 

15                                                                                www.videleaf.com 





=

=





sin

cos

1

1

by

ax
,                                                                            (40) 

 

where the parameter θ is polar angle in the local frame O–x1y1z1. 

 

Since the coordinates of the last tangent point of the elliptical 

path is T2(l, h), by substituting x= l and y= h into y1= -xsinφ* + 

ycosφ*= bsinθ, we have –lsinφ*+ hcosφ*= bsinθT2. From this 

equation, θT2 is calculated as follows: 

 

θT2= arcsin[(-lsinφ* + hcosφ*)/b].         (41) 

 

θT1 of the first tangent point T1(-l, -h) of the elliptical path is 

calculated as follows: 

 

θT1= θT2+ π.            (42) 

 

Step 2: Calculate the coordinates {(xp(θ), yp(θ)); θT2≤θ≤θT1} of 

the points on the elliptical path as follows: 
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Step 3: Generate the optimal asymmetric bisected elliptical path 

using the points {(xp(θ), yp(θ)); θT2≤θ≤θT1} in the reference frame 

O–xyz. 

 

Method to Generate Motion Profile Suited to Geometry 

of Optimal Elliptical Path based on Radius of 

Curvature  
 

In this subsection, we propose a method to generate the motion 

profile suited to geometry of the optimal elliptical path based on 

radius of curvature. 

 

The parametric equation of the ellipse is as follow: 
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From the equation (29), we have 
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The formula of curvature is as follows: 

 

  2/322 )()(

)()()()(





yx

yxyx
K

+

−
= .                     (47) 

      

Substitute the equations (30) and (31) into (32). 

The denominator of the equation (32) is as follows: 

 

    2/3222/322 )coscossinsin()cossinsincos()()(  babayx +−+−−=+  

=  +++  222222 cossincossinsincos2sincos baba         

 2/3222222 coscoscossinsincos2sinsin  baba +−  

= 2/32222 )cossin(  + ba .                                  (48) 

 

The numerator of the equation (32) is as follows: 

 

)()()()(  yxyx − = 

= −+++ )cossincossincossinsincoscossincossin( 222222  bababa      

)cossincossincoscossinsincossincossin( 222222  bababa +−−−  

= ababab =+  22 sincos .          (49) 
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As a result, the curvature is as follows: 

2/32222 )cossin(
)(




+
==

ba

ab
KK .                                 (50) 

    

Therefore, the radius of curvature is as follows: 
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2/32222 )cossin(
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1
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+
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This becomes a key equation of the proposed method to generate 

motion profile suited to geometry of the optimal elliptical path. 

Based on this principle, we propose a method to generate the 

motion profile suited to geometry of the optimal elliptical path as 

follows: 

 

Step 1: Calculate the optimal angle (critical angle) φ* using the 

equation (18). 

 

Step 2: Calculate the first and last angles θT1 and θT2 using the 

equations (26) and (27) as follows: 

 

θT2= arcsin[(-lsinφ* + hcosφ*)/b], θT1= θT2+ π.                       (52) 

 

Step 3: i= 1, θi= θT1. 

 

Step 4: Calculate the radius of curvature at the point 

corresponding to the polar angle θi using the equation (34) as 

follows: 

ab

ba

K

ii

i
i

2/32222 )cossin(

)(

1
)(






+
== .              (53) 

 

Step 5: Calculate the coordinates (xi, yi) of the point 

corresponding to the polar angle θi using the equation (29) as 

follows: 

 


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Step 6: Calculate the polar angle variation Δθi= r•ρ(θi), where r 

is the proportionality coefficient. It should be determined by 

considering that the maximum acceleration satisfies its allowable 

value according to the features of the robot such as movement 

capacity. 

 

Step 7: If θi> θT2 then set i= i+1 and θi=θi-1-Δθi-1, and go to Step 

4 else go to Step 8. 

 

Step 8: n= i. 

 

By using this algorithm, we can determine the coordinates {(xi, 

yi); i=1, 2,…, n} of the nodes (key points) on the motion profile 

of the optimal elliptical path in real-time. 

 

The length of the segment on the motion profile is calculated as 

follows: 

 

2
1

2
1 )()( iiiii yyxxs −+−= ++ ; i=1, 2,…, n-1.       (55) 

     

The motion profiles on two vertical straight line segments P1T1 

and T2P2 should be determined so that the continuity of the 

motion veleocity and acceraltion satisfy at the tangent points T1 

and T2, and the motion times of P1T1 and T2P2 are shortest. 

 

Results and Discussion  
 

To demonstrate the effectiveness of the key equation (34) 

(equation of radius of curvature) of the proposed method to 

generate motion profile suited to geometry of the optimal 

elliptical path, we first plot the graphs of the radius of curvature 

)( , and its first and second derivations )(  and )( 
 

using the equation (34) in case of a= 0.3 and b=0.05 (Figure 3). 

The radius of curvature )(  is corresponding to the velocity, 

and its first and second derivations )(  and )( 
 

are 

corresponding to the acceleration and jerk. 
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Figure 3: Graphs of the radius of curvature, and its first and second derivations. 

 

From Figure 3, we can intuitively grasp that graphs of the radius 

of the curvature, and its first and second derivations are bounded, 

continuous and very smooth. Therefore, the velocities, 

accelerations and jerks on the generated motion profile are also 

bounded, continuous and very smooth when we generate the 

motion profile according to the radius of curvature of the path, 

and it is reasonable to generate the motion profile according to 

the magnitude of the radius of curvature of each point on the 

optimal elliptical path. 

 

To illustrate the proposed method, we next generate the optimal 

elliptical path and its motion profile when the width of the path is 

300 mm and the lift-height of the path is 50 mm. 

 

The simulation scene is shown in Figure 4. In Figure 4, the 

object is picked from the left box and placed into the right box, 

and the path consists of vertical line P1T1, elliptic curve 


21TT  and 

vertical line T2P2. In the simulation, we pay attention to the 

elliptical path. 
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(a) 

 

 
 

(b) 

 
Figure 4: Simulation scene (a) without coordinate axes, (b) with coordinate 

axes) 

 

By using the equations (18)–(20), (26) and (27), the optimal 

angle with minimum length of elliptical path is φ*= 10, the 

optimal semi-major radius and semi-minor radius are a*= 

0.15219, b*= 0.03511, the first and last angles are θT1= -2.329° 

and θT2=177.671°, and the minimum length of the elliptical path 
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is L*= 0.32058. By using the equations (24) and (25), the top 

point of the optimal elliptical path is (0.08617, 0.04352) and the 

top height is H*= 0.06852. 

 

In this case, we generate the optimal elliptical path and its 

motion profile using the generating method of the motion profile 

suited to geometry of the optimal elliptical path from subsection 

2.3. The graphical results are shown in Figures 5–7. 

 

Figure 5 shows the plots of radius of curvature of the optimal 

elliptical path, displacement, velocity, acceleration and jerk at 

each knot on the motion profile obtained using the proposed 

method. (The proportionality coefficient is r= 0.77 in Step 6, 

subsection 2.3.) 

 
 
Figure 5: Plots of radius of curvature, displacement, velocity, acceleration and 

jerk at each knot on the optimal elliptical path: (a) radius of curvature (Curv.), 

(b) displacement (Disp.), (c) velocity (Vel.), (d) acceleration (Acc.), (e) jerk. 

 

Figure 5 demonstrates that the displacement, velocity, 

acceleration and jerk are bounded, continuous and smooth. It 

enables to reduce the fluctuation of velocity, acceleration, jerk of 

the resulting trajectory. It guarantees the stability of the output 

torque of actuators and movement of the industrial robot. The 

proposed elliptical path consists of a single segment, while the 
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other pick-and-place paths consist of two or more segments. The 

velocity and acceleration curves of the proposed elliptical path 

may be smoother than other paths. The elliptical cycle exhibits 

very smooth and continuous motion curves, and it can reduce the 

peak joint torques and increase the maximum pick-and-place 

speed. On the other hand, by the proposed motion profile, the 

velocity gradually increases from the start point to the top point 

of the ellipse, and it gradually decreases from the top point to the 

last point of the ellipse. 

 

Figure 6 shows the optimal elliptical path and its motion profile 

using the proposed method, where the red and green circles 

indicate the start and last points, the blue points indicate the 

nodes (key points) on the motion profile, and the black triangle 

“Δ” indicates the top point of the optimal elliptical path. 

 
Figure 6: Optimal elliptical path (red curve line) and motion profile (blue 

points) using the proposed trajectory planning approach. 

 

Figure 6 intuitively demonstrates that the velocity gradually 

increases from the start point with minimum radius of curvature 

to the top point of the ellipse with maximum one, and it 
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gradually decreases from the top point with maximum one to the 

last point of the ellipse with minimum one. 

 

Figures 4–6 demonstrate that the larger radius of curvature is, the 

larger the motion displacement, velocity and acceleration are. 

The velocity of the point with larger radius of curvature is faster 

than the point with smaller radius of curvature. 

 

Figure 7 shows the displacements of three joint angles α (red 

solid line), β (green dot-dashed line) and γ (blue dashed line), 

which are simulated using the proposed trajectory planning 

method in 3-DOF Delta parallel robot. 

 
 

Figure 7: Displacements of joint angles α (red plots), β (green plots) and γ 

(blue plots). 

 

Figure 7 intuitively demonstrates that the displacements of the 

joint angles are very smooth and it can enables to reduce the 

residual vibration of the manipulator when 3-DOF Delta parallel 

robot conducts the pick-and-place operation using the proposed 

trajectory planning approach. 
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To intuitively demonstrate one of the advantages of the proposed 

method, we compare the length of the proposed optimal 

asymmetric bisect elliptical path with the lengths of the 

symmetric bisect elliptical path, Lamé curve with d= 0.05 and e= 

0.025, and Lamé curve with d= 0.15 and e= 0.025 when the 

width of the workspace is 300 mm and the lift-height of the path 

is 50 mm. The equation of Lamé curve is 1// =+
mm

evdu . 

 
 

Figure 8: Comparison of the proposed optimal asymmetric bisect elliptical path 

with the symmetric bisect elliptical path, Lamé curve. (red line: proposed 

optimal asymmetric bisect elliptical path, green line: symmetric bisect elliptical 

path, blue line:  Lamé curve with d= 0.05 and e= 0.025, black line: Lamé curve 

with d= 0.15 and e= 0.025). 

 

Figure 8 intuitively demonstrates that the length of the proposed 

optimal asymmetric bisect elliptical path is smaller than the 

symmetric bisect elliptical path and Lamé curve-based path, and 

therefore, the cycle time of pick-and-place operation using the 

proposed method may be smaller than the other paths. It results 

in decreasing the cycle period of pick-and-place operation. 
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Conclusions  
 
In this paper, we proposed an approach for elliptical trajectory 

planning with vertical straight line segments of pick-and-place 

robot operation based on radius of curvature, and demonstrated 

its effectiveness using the simulation. 

 

The process to generate motion profile using the proposed 

approach consists of the following steps: 

 

(1) Determine optimal angle with minimum length of elliptical 

path and generate optimal asymmetric bisect elliptical path. 

(2) Determine top point and height of the optimal elliptical path 

with minimum length. 

(3) Generate the motion profile suited to geometry of the 

optimal elliptical path based on curvature radius. 

 
The main conclusions are as follows: 

 

(1) The proposed optimal asymmetric bisected elliptical path has 

a minimum length, the height of the top point and workspace 

is smallest than other paths for pick-and-place robot 

operation. 

(2) The proposed motion profile based on radius of curvature of 

the path is pretty suited to geometry of the optimal elliptical 

path, and therefore, its velocity, acceleration and jerk are 

continuous and very smooth, and it enables to smooth the 

pick-and-place robot operation. 

(3) The proposed trajectory planning approach enables to reduce 

cycle period and ensures smoothness of working action of 

robot actuators and real-time processing. 

 
The propose trajectory planning approach may be actively used 

for pick-and-place robot operation under different work 

conditions. 

 

In this work, we didn’t consider the generation of the motion 

profiles on two vertical straight line segments, and systematic 

and sufficient analysis about the performance of the proposed 

trajectory planning method compared with the other previous 
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methods owing to limited space and time. There is something yet 

to study. Future work and the next subsequent paper deal with 

the problems. Future work needs to study more effective method 

to generate the motion profiles on two vertical straight line 

segments so that the continuity of the motion velocities satisfy at 

two tangent points and the motion times during the vertical 

straight line segments are shortest. 
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