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Abstract

Itisusually assumed that, /7 a cold reservoir at absolute zero (OK) isavailable, then a (perfect, reversible)
Carnot heat engine could operate at 100% efficiency, converting 100% of the heat input from its hot reser-
voir into work. We show that this is not true: Even if a cold reservoir at 0 K is available, even a (perfect,
reversible) Carnot heat engine must reject some waste heat into this cold reservoir. Thus it must operate at
less than 100% efficiency, converting less than 100% of the heat input from its hot reservoir into work. By
applying the First and Second Laws of Thermodynamics, we will derive the entropy increase and the waste
heat that must be rejected into a cold reservoir at or very near 0 K, and the work output and efficiency of
a (perfect, reversible) Carnot heat engine employing such a cold reservoir, if such a cold reservoir is avail-
able. We then consider the possibility, if only in principle (even if only as thought experiments) rather than in
practice, of the existence of cold reservoirs at absolute zero via Carnot, absorption, and stimulated-emission
refrigeration. Caveats concerning heat leakage from ambient into cold reservoirs and fluctuations are dis-
cussed next, as well as the possibility of a system spontaneously attaining absolute zero via fluctuation.
Next, we consider a method that in principle can experimentally determine whether or not a system’s tem-
perature is absolute zero without heat leakage into the system. Then, we discuss the nature of hot and cold
reservoirs that can and cannot maintain a constant temperature. In the Appendix, we discuss an interesting
aspect of the relationship between entropy and heat capacity.

I. INTRODUCTION

It is usually assumed that, if a cold reservoir at absolute zero (7 = 0K) is available, then a
(perfect, reversible) Carnot heat engine could operate at 100% efficiency, converting 100% of the
heat input Qz from its hot reservoir into work /. In Section II, we show that this is not true:
Even if a cold reservoir at absolute zero (7> = 0 K) is available, if the Second Law of Thermo-
dynamics is not to be violated even a (perfect, reversible) Carnot heat engine must reject some
waste heat into it. Hence (i) even if a cold reservoir at absolute zero (7 = 0K) is available, it
could remain at 0 K only initially [i.e., even if T¢ initial = 0K, Tz > 0K immediately thereafter
when even a (perfect, reversible) Carnot heat engine begins operating], and (ii) even a (perfect,
reversible) Carnot heat engine employing this cold reservoir must operate at less than 100% effi-
ciency, converting less than 100% of the heat input Q; from its hot reservoir into work 1. (Of
course, if there is any imperfection or equivalently any irreversibility, the inequality 7~ > 0K
immediately thereafter will be stronger than with perfect, reversible operation.) By applying the
First and Second Laws of Thermodynamics, we will derive the entropy increase and the waste
heat that must be rejected into a cold reservoir initially at T = 0 K, and the work output I/ and
efficiency of a (perfect, reversible) Carnot heat engine employing such a cold reservoir, if such a
cold reservoir is available.

Our results are also valid for non-Carnot-cycle heat engines that equal Carnot-cycle heat en-
gines in efficiency, e.g., Stirling-cycle heat engines with regeneration.® [The Stirling cycle with re-
generation is more complicated than the Carnot cycle;® hence, we focus on the Carnot cycle, which
is the archetype, and also probably the simplest conceptually, of maximally thermodynamically ef-
ficient heat-engine (and refrigerator and heat-pump) cycles.' Also, henceforth, when mentioning
the Stirling heat-engine cycle (or the reverse Stirling refrigerator/heat-pump cycle),® “with regen-
eration” will be omitted for brevity, but is to be understood.] Moreover, except for the utmost-
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low-temperature limit discussed in Section IIC, our results are also valid to within an excellent
approximation even if a cold reservoir is initially at 7T jpitia1 > 0 K with 0 K < T initial < 10 final-

In Section III, we briefly review the unattainability formulation of the Third Law of Ther-
modynamics. We then consider some possibilities, if only in principle (even if only as thought
experiments’) rather than in practice, of the existence of cold reservoirs at absolute zero (0 K) via
Carnot/Stirling, absorption, and stimulated-emission refrigeration. (A thought experiment’ consid-
ers only the essential physics and ignores all practical engineering complications. In a paraphrase
of a more detailed quote of Einstein,’ it should be “as simple as possible, but not simpler’.)
Caveats concerning heat leakage from ambient into cold reservoirs and fluctuations are discussed
next, as well as the possibility of a system spontaneously attaining absolute zero via fluctuation.
We then consider a method that in principle can experimentally determine whether or not a sys-
tem’s temperature is absolute zero without heat leakage into the system.

In Section IV, we discuss the nature of hot and cold reservoirs that can and cannot maintain a
constant temperature. In general, hot and cold reservoirs can be of either type. But we will show
that a cold reservoir initially at absolute zero (0 K) or even at a temperature above but arbitrarily
close to 0 K must — not merely can — be of the latter type.

Concluding remarks are provided in Section V.

In the Appendix, we discuss an interesting aspect of the relationship between entropy and heat
capacity. This relationship per se is true in general, but it is typically manifested only by certain
systems at very low temperatures. Our example entails conduction electrons in metals.

II. OPERATION OF A CARNOT/STIRLING HEAT ENGINE /F A COLD RESERVOIR
AT T = 0K IS AVAILABLE

A. Heat engines employing cold reservoirs at absolute zero (I = 0 K)

Consider the operation of a (perfect, reversible) Carnot'~ (or Stirling®) heat engine employing
a hot reservoir at fixed temperature 7y and a cold reservoir at absolute zero (7> = 0K), if such
a cold reservoir is available. If this heat engine operates at exactly 100% efficiency, converting
exactly 100% of the heat input Qi from its hot reservoir into work W, by the First Law of Ther-
modynamics zero waste heat would be rejected into its cold reservoir at absolute zero (7> = 0 K).
Hence the total entropy change would be that of the hot reservoir alone, i.e.,

AStotal - ASH = —7 < O> (l)

as if the cold reservoir at absolute zero (7 = 0 K) didn’t even exist!® But this violates the Second
Law of Thermodynamics, which requires ASi.1 = 0 even for perfect, reversible operation, and
ASiotar > 0 for less-than-perfect operation. Thus, if the Second Law of Thermodynamics is not to
be violated, some waste heat must be rejected into the cold reservoir at absolute zero (7 = 0 K),
even given perfect, reversible operation. Hence, even if a cold reservoir at absolute zero (7 = 0 K)
is available, it could remain at 0 K only initially. 1f the Second Law of Thermodynamics is not to
be violated, it can no longer remain at 0 K at the instant after even a (perfect, reversible) Carnot!' >
(or Stirling®) heat engine begins operating: hence even if Te iniial = 0K, T > 0 K immediately
thereafter. (Of course, if there is any imperfection or equivalently any irreversibility, the inequality
Te > 0 K immediately thereafter will be stronger than with perfect, reversible operation.)
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Given perfect, reversible operation of a Carnot'™ (or Stirling®) heat engine employing a hot
reservoir at fixed temperature 7 and a cold reservoir initially at absolute zero (1 = 0K), the
Second Law of Thermodynamics requires:

TC,ﬁnal d TC final C
AstotaleSC+ASH:</ %)_%:</ T_dTC)_QHZO
0K ¢ H 0K C

TC final
— / EdTC _ @ (2)
Th

We employ the symbol C' to denote heat capacity, usually of cold reservoirs but sometimes of
other systems. It is to be understood that in general heat capacity C' is a function of temperature
(unless it is specifically mentioned that C' is constant in a given particular case). Heat capacity C'
should not be confused with the subscript ¢, the latter referring the subscripted quantity to a cold
reservoir. (Of course, the subscript j refers the subscripted quantity to a hot reservoir.) We note
that at sufficiently low temperatures it is immaterial to specify whether the heat capacity C' is taken
to be at constant volume, i.e., C'y, or at constant pressure, i.e., C'p. This is because, in the limit
Tc — 0K, not only do Cyy — 0 and Cp — 0, but furthermore (Cp — Cy) /Cyy — 0.7713 {Since
in all cases Cp > Cy [the equality obtaining only in the rare cases wherein (0V/0T), = 0, as
for water in the immediate vicinity of 7' = 4°C],”"? in the limit 7o — 0K (Cp — Cy) /Cp — 0
always at least as rapidly and except in said rare cases more rapidly than (Cp — Cy) /Cy —

0.2},
Also
Tc final T¢ final
Qo= [ age= [ car. G)
0K 0K
Hence, by the First and Second Laws of Thermodynamics:
Tc final
W=Qu-Qe=Qu- [ Cilo
0K
W _ C\final CdT
= €Carnot — = QH QC =1- % =1- fO Cv (4)
Qu Qu Qu Qu

where €camot 1S the Carnot efficiency. Thus, even assuming perfect, reversible operation of a
Carnot' (or Stirling®) heat engine, the Second Law of Thermodynamics requires that even the
tiniest amount of heat input () from the hot reservoir must result in T fina > 0 K = €camot < 1.

Irrespective of the nature of a cold reservoir, its entropy Sc (T¢) at any temperature 7 is
nonnegative and finite. For, in general:!'*?!

Tc C To C
SC (Tc) = SC (TC = OK) +/ 7 dTC = k‘B lngco +/ 7 dTC, (5)
0K T 0K T

where kp is Boltzmann’s constant and gc is the degeneracy'*2! of the ground energy level of

the cold reservoir. Heat capacities a/ways decrease with decreasing temperature at sufficiently low
temperatures as 7o = 0K is approached.!*?! Hence the integral in Eq. (5) always converges —
and hence S¢ (T¢) is always finite.'*?! [Note: Even if C did not decrease with decreasing T
but instead remained constant as 7> = 0 K is approached, the integral in Eq. (5) would diverge
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only just barely, i.e., only logarithmically, and hence S¢ (T-) would be only just barely, i.e., only
logarithmically, infinite.]

B. Heat capacity of a cold reservoir oc 7,

In many cases, the heat capacity C' of a cold reservoir at very low temperatures is proportional
to its temperature raised to a small positive power n,2>%7 i.e.,

C = rmTf (n > 0), (6)

where r is a constant whose dimensions are [?/ (27" *!) (I = length, t = time, T' = temperature)
and whose numerical value*>2” depends on the nature?>%7 of the cold reservoir,?>?’ and where m
1s the mass of the cold reservoir.

Applying Eq. (6) to Eq. (5), if C' = kmT % (n > 0)

TCT
Sc (TC) = ]{IBIDQCO +/<;m/

=kplngeo + /ﬁm/ Té"ildTé
0K

T’n
= kplngeo + “”:L  (n > 0). (7)

[If n = O the integral in Eq. (7) diverges (albeit only logarithmically), and if n < 0 it is negative
— both unphysical results. ]

Here are some examples of heat capacities of the form C' = kmT% (n > 0) given by Eq. (6):**2’
For a cold reservoir comprised of equilibrium blackbody radiation, or for one comprised of a crys-
talline solid (Debye model), n = 3. For a cold reservoir comprised of conduction electrons in
metals, n = 1. For a cold reservoir comprised of a Bose-Einstein condensate, n = 3/2. (There is
ann = 3 contribution to C' due to lattice vibrations in conductive metals,?®?? and also higher-order
electronic contributions,?®? but as T — 0 K these contributions become negligible compared to
the n = 1 electronic contribution.?%-3?)

Assuming perfect, reversible operation of a Carnot!~> (or Stirling®) heat engine, if Eq. (6)
applies for our cold reservoir, which is initially at T = 0 K, then applying Eq. (6) to the second
line of Eq. (2) yields:

T¢C final Tn Tc,final
Km / dTC — Kkm / T dTe = Qu

Ty
TC’ final QH
n TH
1/n
n
- TC’,ﬁnal - ( QH ) . (8)
kg
Also, applying Eq. (6) to Eq. (3),
TC,ﬁnal Tc’ﬁnal /{ng—gl |
QC = / dQC = /ﬂ}m/ ngTC = 4na. (9)
0K 0K n+1
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Hence, by the First and Second Laws of Thermodynamics, applying Eq. (9) to Eq. (4):

W ’%ng,—Eial
Kng,—g]l:lal TL+1
— e _ w _ QH - n+1 —1_ "{mTC,ﬁnal (10)
arnot QH QH 7(71, T 1) QH.
Upon applying the second line of Eq. (8), Eq. (10) can be put into the alternative form
K'ng final
W=0Qx—Qc=Qn—Tofina | —1—
n+1
n Qu n T¢ final
= Qu — Tosina 2 = Qu |1 - ’
o= tea | (57) 7] -0 [ - (1) 75
W n\ 1¢c final
= arnot — ~  — 1-— , . 11
€Carnot On (n T 1) Ty (11)

And, upon applying the third line of Eq. (8), Eq. (10) can also be put into the alternative form

n L/n i 1+1
km [(ﬁ—ﬂ) ] kM (—;;?Ti’q) "
W =0 —0r =0 — 0.

Qo — Qc H ] Qu ——

= Qn — : (nQH)H%
(n+1) (km)"™ \ Tu
- 1 o\ e On 1/n
QH{anrl(TH) <%)
_ w _ 1 L I Qn Ln
— == L- 1 (1) () (12)

We can also express W and €capmot in the form

(i)

Tn
— N — N = 1
ECarnot QH TH Y ( 3)

where (T¢) is the average temperature of the cold reservoir during the operation of the (perfect,
reversible) Carnot'™ (or Stirling®) heat engine as T increases from T initial = 0K to T inal >
0 K. (We denote average values via enclosure within angular brackets.) Upon comparing the last
two lines of Eq. (11) with Eq. (13), if C' is given by Eq. (6) we obtain

n

Ty = - T 14
(Te) 1 Lofinal (14)
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C. The extreme low-temperature limit: The Einstein and two-state models

If T¢ gina1 1 extremely low, then only the ground state and first excited state of the atoms com-
prising the cold reservoir need to be considered. Let A Ej_,; be the energy gap between the ground
state and first excited state of each of these atoms. This low-temperature-limit heat capacity of the
Einstein model***> and of the two-state model*® (which is the same for both models if one sets
hv = AEy_,; where v is the vibration frequency of atoms comprising a crystal as per the Einstein
model) is then a more physically correct representation than a heat capacity oc 77 (n > 0). It

is33736

AFy 1 \° 3N [AFy_1\°
CEQS,TCHOK — 3Nkg 0—1 e~ AFo—1/kpTe _ =77 0—1 e—AEo—»l/kBTC, (15)
kBTC kB TC

where [V is the number of atoms comprising the cold reservoir (the factor of 3 accounting for the 3
translational degrees of freedom per atom owing to space being 3-dimensional). If Eq. (15) applies
for our cold reservoir, which is initially at Ti initia = 0 K, then applying Eq. (15) to the second line
of Eq. (2) yields:*’

3N (AEy .;)? /Tc’ﬁnal e SR et i Qn
kg 0K e Tn
Tc final —AFEo—1/kpTc kp Qu
— /OK T3 dTCZgN(AE )2T
C 0—1 H
N T¢,final
( koB_q +TC) e~ AEo—1/kpTc kp Qn
—_— =
(_AED~—1)2T 3N (AEy—1)* T
kg ¢ 0K
(Bf + Te) edrom/iote o Qn
— ~ QL T
TC 3N]€BTH
0K
(ALZ?;I 4 TO,ﬁnal> e~ AEo—1/kBTc final Qu
— =
TC,ﬁnal 3NkB TH
e*AEOﬂl/kBTC,ﬁnal QH AEO—)l
:> = fT na. < 16
Tt fima SNTpAEy o oS Ty 1o

The evaluation of the integral in Eq. (16) is courtesy of the Online Integral Calculator at
https://www.mathworld.wolfram.com.’” [The integral in Eq. (16) is finite because, in the limit
To — 0K, e=AFo—1/ksTo () faster — indeed much faster — than 72 — 0K?®.] Unfortunately,
even the simplified result in the last line of Eq. (16) in the limiting case T¢ fina1 < A%—’l, let alone
the more general result in the second-to-last line thereof, cannot be solved analytically for 7¢ finaj,
but must be solved numerically. This is in contrast with Section IIB, wherein 7 s, Was derived
analytically. Hence, results for Qc, W, €carmot, and (T¢), which were derived analytically in Sec-
tion IIB, also would only be obtainable numerically in this Section IIC. Since these numerical
calculations can be tedious but would reveal no new concepts, we omit them.
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D. The utmost low-temperature limit: Only one quantum of waste heat rejected into the cold
reservoir

Now consider the utmost low-temperature limit: only one quantum of waste heat being rejected
into a cold reservoir, which is initially at absolute zero (1¢ initiai = 0 K). In this case we clearly
need consider only the ground energy level and the first excited energy level of the entire cold
reservoir. In this case, AFEy .1, the energy gap between the ground state and first excited state of
each of the atoms comprising the cold reservoir, also equals the energy gap between the ground
energy level and first excited energy level of the entire cold reservoir. Thus

Qc = AEy_.;. (17)

Let the cold reservoir be comprised of N atoms. Then the degeneracy of the first excited energy
level of the cold reservoir is gc; = N, because there are N ways to put one quantum of energy
among N atoms. (The degeneracy gc o of the ground energy level, whether it equals or exceeds
unity,'*2! doesn’t matter, because it is not changed when one quantum of waste heat is rejected
into the cold reservoir.)

Corresponding to one quantum of waste heat Q- = AEj_,; being rejected into the cold reser-
voir

ASC = kBlngql. (18)
Applying Eq. (18) to the second line of Eq. (2) yields
_Qn _
kplngea = T Qu = kpTpIngc. (19)
H

Hence, by the First and Second Laws of Thermodynamics, applying Egs. (17) and (19) to Eq. (4):

W=Qu—Qc=0Qu—AEy_1 =kgTuglnge1 — AEy_

|44 . kT In gci — AEy_ 1 AEy
Qn kpTh In gc, kpTulnge,

— €Carnot — (20)

Since after rejection of one quantum of waste heat into it, the cold reservoir has a fixed energy
AF,_,; above the ground energy level rather than a Boltzmann distribution of energies, it doesn’t
have a well-defined temperature 7> (see Section IIIF2a). (The hot reservoir, of course, still has
the well-defined temperature T.) If nevertheless we wish to express W and €carmot in the same
form as Eq. (13), we can construe an effective average temperature (T¢ o) (but see Section I1IF2a)
during the rejection of one quantum of waste heat into the cold reservoir. Comparing Eq. (20) with
Eq. (13), in the utmost-low-temperature limit we obtain

AE,O~>1

Toeg) = ——.
Toen) kplngca

1)
It might seem that there should be an extra numerical factor greater than unity in the denominator
of Eq. (21), i.e., that the right-hand side of Eq. (21) represents Tt et fina; Tather than (7¢ ). But,
again, since after rejection of one quantum of waste heat into it, the cold reservoir has a fixed
energy AFj,_,; above the ground energy level rather than a Boltzmann distribution of energies, it
doesn’t have a well-defined temperature 7> (see Section I1IF2a): the effective average temperature
(Tc o) does not connote a well-defined temperature.
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ITI. IS A COLD RESERVOIR AT 7 = 0 K POSSIBLE OR IMPOSSIBLE?

A. The unattainability formulation of the Third Law of Thermodynamics

Various formulations of the Third Law of Thermodynamics have been investigated in both the
classical and quantum regimes.®**>! (We note that Refs. 38-51 are a limited number of samples
from a vast literature. But, hopefully, they are representative samples.) Our main focus is on
the unattainability formulation of the Third Law of Thermodynamics.*®**! The unattainability
formulation of the Third Law of Thermodynamics states that it is impossible to cool any system
to absolute zero (0 K) via any adiabatic process or via any finite sequence of adiabatic processes,
because no adiabat beginning at T initial > 0 K can reach T gua = 0 K.*%34! Hence no adiabatic
process or finite sequence of adiabatic processes beginning at 7 initia1 > 0 K can reach Tt fna =
0 K 383941

But it has been conjectured that, even though an infinite sequence of adiabatic processes would
be required to reach absolute zero (T = 0 K), it could still be done in a finite time.**

Moreover, it should be emphasized that the unattainability formulation of the Third Law of
Thermodynamics does not go as far as stating that it is impossible to cool a system to absolute
zero via any process whatsoever.”>>* It states only that this is impossible via adiabatic cooling.
Indeed, a quantum-mechanical refrigeration method of attaining absolute zero experimentally has
been investigated.*

In this Section III, we will investigate the possibility of attaining absolute zero in princi-
ple (even if only in thought experiments’), rather than in practice, via Carnot/Stirling refrig-
eration, absorption refrigeration, and stimulated-emission refrigeration. Our investigations of
Carnot/Stirling and absorption refrigeration will be strictly within the classical regime, with no
quantum-mechanical considerations (except for brief remarks in the last paragraph of Section IIIF 7).
Of course, stimulated emission is a quantum-mechanical process. (Quantum refrigeration is inves-
tigated — in depth — in Refs. 47-50.) We will then consider caveats, including heat leakage from
ambient, energy/temperature fluctuations, and the possibility of a system spontaneously attaining
absolute zero (0 K) via fluctuation.

B. Carnot/Stirling refrigeration

We should note that it is impossible to cool any (finite) system to absolute zero via any adiabatic
process or finite sequence of adiabatic processes not because an infinite (or even an extraordinarily
large finite) amount of work would be required to do so. It is indeed true that “it requires huge
amounts of work to extract even trivially small amounts of heat from a system near T = 0 K™%,
But owing to the rapid decrease with decreasing temperature 7> of the heat capacity C' of any
system as T = 0K is approached, less than — most typically much less than — trivially small
amounts of heat would need to be extracted to cool any system to 7~ = 0 K. Hence less than —
most typically much less than — huge amounts of work would be required. If there is available
a reservoir at temperature 7 initia; for this specific purpose, the work required from a (perfect,
reversible) Carnot'>36-8 refrigerator to cool a system from an initial temperature T initial > 0K
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to T = 0 K is!™-6-38

T initia _T T initia/ T initia/
dW: Cinitial CdQC:<C{Ttl_l)dQC:C<CTtl_1>dTC

Te c c
T¢,initial T
— W= / C ( T - 1) dTc
0K C
T¢ initial C T¢ initial
= TC,initial/ _dTC _/ CdTC
0K Tc 0K
T¢ initial C
— T / dTe ~ Qc. (22)
0K C

This reservoir at 7 initial 1S 120t to be confused with the hot reservoir at temperature 7 for a Carnot
heat engine as discussed in Section II: ideally, T jnitiat <K 1. [The result of Eq. (22) is matched
by refrigeration via a reversed Stirling cycle.®]

Because C' always decreases with decreasing temperature at sufficiently low temperatures as
Te = 0K is approached, the first integral in the third line of Eq. (22) (which is repeated in the
fourth line thereof), like the integral in Eq. (5), always converges — and hence W is always
finite. Furthermore the second integral in the third line of Eq. (22) is subtracted from the first
integral therein, thereby decreasing the already finite contribution to W from the first integral. The
second integral in the third line of Eq. (22) is by the fourth line thereof is simply ()¢, the total
heat extracted from the cold reservoir. It is in all cases not only finite, but smaller than the first
integral in the third line of Eq. (22), because T < T iitial throughout the range of integration of
the first integral except at the upper limit. [Note that even if C' did not decrease with decreasing
T but instead remained constant as 7> = 0K is approached, the first integral in the third line
of Eq. (22) (which is repeated in the fourth line thereof) would diverge only just barely, i.e., only
logarithmically, and hence W would be only just barely, i.e., only logarithmically, infinite.]

The coefficient of performance of this Carnot refrigeration'>-36-3% (which is matched by refrig-
eration via a reversed Stirling cycle®),

d CdT, T
COPCarnot = QC = < = <
aw dw TC,initial - TC
T
— % inthelimit Tp — 0K, (23)
Cinitial

decreases with decreasing 7. But the heat capacity C' of a cold reservoir decreases faster, typically
much faster, with decreasing 7. Hence the total integrated work W required for cooling a cold
reservoir from 7 initia1 > 0K to T = 0 K as per Eq. (22) is finite, and typically of small amount.

Perhaps at this point it is worthwhile to re-emphasize that T it for Carnot!>-6-3%/Stirling®
refrigeration should not be confused with T for Carnot!~>/Stirling® heat-engine operation: €carnot
for Carnot'>/Stirling® heat-engine operation is maximized if Ty is maximized, but COP camet for
Carnot'~-%-8/Stirling® refrigeration is maximized if T ipitia1 1S minimized.

For example, if C' is given by Eq. (6), i.e., if C = xmT{ (n > 0) then, assuming perfect
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(reversible) operation and applying Eq. (22), we obtain this finite result for V:

T¢ initial Tg T¢,initial
W= (Toman [ qodlo= [ 7 T3
0 0

K TC K
T¢,initial . T¢ initial
= Km <Tc,initial / Th dTe — / T dTC>
0K 0K
+1
=rm | Triirs Tg,initial . Tg,initial
Cinitial n o 1
1 1
_ +1
= KM il (ﬁ Tt 1>
kmTTL
_ " Cinitial (n > 0). (24)
n(n+1)

[Note that even if C' did not decrease with decreasing 7~ but instead remained constant as Tx =
0 K is approached, e.g., if n = 0 in Eq. (24), the first integrals in the first two lines of Eq. (24), being
a special case of the first integral in the third line of Eq. (22), would diverge only just barely, i.e.,
only logarithmically, and hence W would be only just barely, i.e., only logarithmically, infinite.]

Thus the unattainability formulation of the Third Law of Thermodynamics does not forbid the
attainment of absolute zero (T = 0K) via Carnot!>%%/Stirling® refrigeration because it would
cost an infinite (or even an extraordinarily large finite) amount of work W to do so, but because
the inability of any adiabat beginning at T initia1 > OK to reach T sna = 0K precludes the
performance of the required finite (typically small) amount of work.

Hence, if the Third Law of Thermodynamics — specifically, the unattainability formulation
thereof — forbids cooling to absolute zero via Carnot'>>6-3%/Stirling® refrigeration, it cannot be
because this would cost an infinite (or even an extraordinarily large finite) amount of work IW: It
must be for other reason(s).

But we considered only the work W required for extracting heat () from a cold reservoir. This
1s the ideal or perfect case, assuming perfect insulation, i.e., with no leakage of heat whatsoever
from ambient into the cold reservoir. We did not consider leakage of heat from ambient into the
cold reservoir. Also, we did not consider the effects of fluctuations on the possibility or impos-
sibility of attaining absolute zero. These issues will be discussed in Sections IIIE, IIIF, and IIIG,
with our reasoning explained in Sections IIIF and IIIG.

C. Absorption refrigeration

Absorption refrigeration® is powered by heat rather than by work.”® Heat input Q5 from a
heat source or from a hot reservoir at fixed temperature 7 drives heat extraction ()¢ from a cold
reservoir at temperature T, with both Q¢ and @), summing to (), being expelled at a fixed
intermediate temperature 77.%° Of course, T is not fixed but decreases as refrigeration proceeds,
until 7 is reduced to its lowest possible value. But can this lowest possible value be absolute zero
(Te = 0K), even in principle?

By the First Law of Thermodynamics

Qr=Qc+ Qn. (25)
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By the Second Law of Thermodynamics, assuming perfect (reversible) operation:

AStotaleS[‘f‘ASC—}—ASH:%_%_%:0
Qr Q¢ Qg
— Ty Tec * Ty
_ Qc Qu o T 17
= Qr=1; <TO + TH) = TCQ0+ THQH. (26)

The right-hand terms of Eq. (25) and of the last line of Eq. (26) are both equal to (); and hence are
also equal to each other. Thus, assuming perfect (reversible) operation:

1 Ty
Qc+Qu = TCQC + THQH

Ty Ty
— @ (1-77) =@ (7:-1)

=1 e Ty (T; — T¢)
H Cl—;—é C'THT—HTI CTC(TH—T])
B TyuT; Ty
= Qe (Ty — T7) A —
Ty (T,
_ 1), 27
Qo0 (7 -1) @)

Hence, assuming perfect (reversible) operation, the heat input from a heat source or from a hot
reservoir at fixed temperature 7 required to cool the cold reservoir from an initial temperature
Tt initial > 0 K to absolute zero (I = 0K) 1s

Ty T
dQy = 7 _1)a
Qu T T (Tc ) Qo
Ty T¢ initial T,
s Qu— 1)
@ Ty — 17 /OK (TC ) Ce

T T¢,initial T
=_-# / (—f - 1) CdTe
Ty < /TC,initial C /Tc,initial >
= T —dTo — CdT,
Ty —Tr \" " Jox To % Jox ¢

Ty l ( /Tc,initial C ) ]
= T —dTo | — . 28
-1, |\ 7, Qe (28)

Note that, with the substitutions W — @ and T initiar — 17, the form of Eq. (28) is, except
for the prefactor TffTI , 1dentical to that of Eq. (22). Hence exactly the same reasoning applies:
Because C' always decreases with decreasing temperature at sufficiently low temperatures as T =
0 K 1s approached, the first integral in the fourth line of Eq. (28) (which is repeated in the fifth
line thereof) always converges — and hence Q) is always finite. Furthermore the second integral

in the fourth line of Eq. (28) is subtracted from the first integral therein, thereby decreasing the
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already finite contribution to () from the first integral. The second integral in the fourth line of
Eq. (28) is by the fifth line thereof is simply ()¢, the total heat extracted from the cold reservoir.
It is in all cases not only finite, but smaller than the first integral in the fourth line of Eq. (28)
because (1) T < T¢initial throughout the range of integration of the first integral except at the
upper limit and (i1) the first integral is multiplied by the prefactor 77 > T initia (for absorption
refrigeration to operate 77 > T must always obtain in general, and, in particular, 77 > T ipitial
must obtain). [Note that even if C' did not decrease with decreasing 7~ but instead remained
constant as T = 0K is approached, the first integral in the fourth line of Eq. (28) (which is
repeated in the fifth line thereof) would diverge only just barely, i.e., only logarithmically, and
hence () would be only just barely, i.e., only logarithmically, infinite. ]
Comparing Eq. (28) with Eq. (22):

QH B TH T] fTC initial C dT . fTC initial CdTC
W TH — TI TC nitial fo C,initial C dTC fo Cinitial CdTC

> 1. (29)
The inequality in the second line of Eq. (29) obtains because (i) for absorption refrigeration to
operate 77 > T must always obtain (in particular, 77 > T initia) must obtain) and (i1) T > 1.

Thus we conclude that more energy as heat Qg is required to attain 7o = 0K via absorptlon
refrigeration®” than as work W via Carnot'~6-3%/Stirling® refrigeration. But, still, the total inte-
grated heat () from a heat source or from a hot reservoir required for cooling the cold reservoir
from T initial > 0 K to T¢ sina) = 0 K as per Eq. (28) 1s finite, and typically of small amount [larger,
but only finitely larger, in amount than W as per Eq. (22)]. Moreover, energy to be supplied as heat
is of lower quality, and therefore thermodynamically cheaper per unit quantity, than energy to be
supplied as work.

Applying Eq. (27), for given T and given Ty, the coefficient of performance for absorption
refrigeration is>

cop.. _ Q¢ _ CdTe T
dQm dQu ﬁ —
R To Tu-T,
TIT Ie  Tr—Tc Tu
C
_ TIc ] 17
T —Tc Ty
T 17
- Tf (1 - E) in the limit 7> — 0K . (30)
Comparing Eq. (30) with Eq. (23):
Tc 1 _TIr
COP.bs  Ti-To Tu ) Temitia — o (1 B &)
COPCarnot Tcmfﬁ TI - TC TH
Trinitia T\ o
= C;Im : (1 — ﬁ) in the limit 7o — 0K
< 1. (31)
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The inequality in the third line of Eq. (31) obtains because for absorption refrigeration to operate
Te < Tr < Ty must always obtain (in particular, 7 initiar < 77 < T’y must obtain). This further
confirms our conclusion that more — but only finitely more — lower-quality energy as heat )y is
required to attain T = 0K via absorption refrigeration®® than higher-quality energy as work W
via Carnot!--38/Stirling® refrigeration.

In this regard, recall (as per the first four paragraphs, especially the third and fourth paragraphs,
of Section I1IB) that COP qapmet for Carnot!>°¢8/Stirling® refrigeration is maximized by minimiz-
ing T initia. But, by contrast, COP,,s is independent of 7t initia and hence cannot be maximized
by minimizing 7 initial-

For example, if C' is given by Eq. (6), i.e., if C = kmT{ (n > 0), then, assuming perfect
(reversible) operation and applying Eq. (28), we obtain this finite result for () y:

TH TC,initial Tg TC,initial
— " (T —“dTy — THdT,
Qu /imTH_TI<1/OK 7. o /OK cdlc

TH T¢,initial ) T¢ jinitial
= KM= T]/ Tg_ dTC — / ngTC
Ty — 17 0K 0K

n n+1
. TH (T TC,initial TC,initial )
b _

T n n+1
TuTC i (Tr  TCmitia
= Gmtal (71 7 Cnitial > 0). 32
i Ty —1T; n n+1 (n ) ( )

[Note that )y as per Eq. (32) is always positive, because T > 11 > T initial and n < n + 1.]
Comparing Eq. (32) with Eq. (24):

n
TuTE initial (Q T¢,initial >

QH Km Ty—T7 n n+1
= 1
w ’ing,Tnitial
n(n+1)

_ n(n+1)Ty T T¢ nitial
e mitia (T — T7) <E o1 >
 on+ )Ty (n+1)T; — 0T nitia
 Tomitial (T — T7) n(n+1)
Ty [(n+1)T; — nTemitial
N T inivial (T — T7)

Ty (n+1)T — Tt mitial

B TH - TI TC,initial
Ty 17
Ty —1T; ( ) T¢ nitial
> 1. (33)
The inequality in the last line of Eq. (33) obtains because: (i) THTETI > 1, (i1) for absorption

refrigeration to operate 77 > T~ must always obtain (in particular, 77 > T initial must obtain), and
(i) n+1>n.
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Hence, our results as per Egs. (32) and (33) of the special case wherein C' is given by Eq. (6),
i.e., wherein C' = kmT} (n > 0), confirm our general results as per Egs. (25)—(31) that more — but
only finitely more — lower-quality energy as heat () 5 is required to attain 7o = 0 K via absorption
refrigeration®® than higher-quality energy as work W via Carnot'>6-3%/Stirling® refrigeration.

The inequalities in Egs. (29), (31), and (33) are unfavorable for absorption refrigeration insofar
as more energy as heat (0 being required to attain 7 = 0K via absorption refrigeration®® than
as work W via Carnot'>°6-3%/Stirling® refrigeration. Yet we re-emphasize that: (i) as per Egs. (28)
and (32) the heat QQp required to attain T = 0K via absorption refrigeration®® is nonetheless
finite, and typically of small amount [larger, but only finitely larger, than W as per Egs. (22)
and (24), respectively] and (i1) energy to be supplied as heat is of lower quality, and therefore
thermodynamically cheaper per unit quantity, than energy to be supplied as work.

Also, we should mention this important qgualitative — as opposed to merely quantitative — dif-
ference between Carnot'>¢%/Stirling® refrigeration and absorption refrigeration:*
Carnot'>°6-33/Stirling® refrigeration relies on adiabatic processes, but absorption refrigeration®
does not. Adiabatic processes entail energy transfer via work only — but in absorption refrigera-
tion all energy transfers are via heat only.>® Thus at least prima facie, might the unattainability for-
mulation of the Third Law of Thermodynamics, which forbids cooling any system to absolute zero
via adiabatic processes**>%*! — but not necessarily via any process whatsoever>*>> — be circum-
vented in principle via absorption refrigeration, despite the unfavorable inequalities in Egs. (29),
(31), and (33)? The immediately preceding question emphasizes in principle (even if only as a
thought experiment’), rather than in practice.

Hence, if the Third Law of Thermodynamics forbids cooling to absolute zero via absorption
refrigeration, it cannot be because (1) an adiabat beginning at T initian > 0 K cannot reach T =
0 K or (i1) it would cost an infinite (or even an extraordinarily large finite) amount of heat () from
a heat source or from a hot reservoir: It must be for other reason(s).

But we considered only the heat () from a heat source or from a hot reservoir required for
extracting heat () from a cold reservoir. This is the ideal or perfect case, assuming perfect insu-
lation, i.e., with no leakage of heat whatsoever from ambient into the cold reservoir. We did not
consider leakage of heat from ambient into the cold reservoir. Also, we did not consider the effects
of fluctuations on the possibility or impossibility of attaining absolute zero. These issues will be
discussed in Sections IIIE, IIIF, and IIIG, with our reasoning explained in Sections IIIF and ITIG.

D. Stimulated-emission refrigeration

Consider the following process, even if it is feasible only in principle (even if only as a thought
experiment,’), rather than in practice. Let a system be comprised of N identical atoms. Let each
of the N atoms comprising this system be pumped into a given excited state x of energy AFE, .,
above its ground state energy Fjy. This costs energy NAFE, .. /E, where £ is the energy efficiency
of the pumping. (Given perfection, i.e., £ = 1, the energy cost is NAFE,_.,.) Let these N atoms
be put into their ground states with 100% probability by stimulated emission®® via employing very
strongly nonequilibrium electromagnetic radiation, e.g., as in a laser. Some stimulated emission®
from this given excited state x to the ground state will also be effected by the background equilib-
rium blackbody radiation corresponding to the ambient temperature, 7} pient > 0 K. (Of course,
preferably T.ient Should be as low as possible. We note that the cosmic background radiation
of outer space is an ambient thermal environment at 7}, piene = 2.7 K.) The probability that this
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nonequilibrium electromagnetic radiation, and for all practical purposesif AE,_,, > kTympien: @S0 the background
equilibrium blackbody radiation, will stimulate absorption rather than emission

from this given excited state x to a higher excited state y is 0% if there is no higher excited state
y of energy AL, _,, < AFE,_,, above this given excited state . Let ALj_,; be the energy gap be-
tween an atom’s ground state and its first excited state. If say, AFEy_.; = 1000k g Tambient, then the
probability that the background equilibrium blackbody radiation corresponding to 7ypient > 0 K
will stimulate absorption from the ground state to even the first excited state during the brief time
interval required for stimulated emission is for all practical purposes 0%. For then the probability
that any one given atom can be boosted from its ground state to even its first excited state by the
background equilibrium blackbody radiation corresponding to Tyhppient > 0K is < 7190 e
< 10743, Hence the probability that any of the N atoms comprising our system can be boosted
from its ground state to even its first excited state by the background equilibrium blackbody radi-
ation corresponding t0 Tyypient > 0K is < Ne7109 je < N x 107439, But typical laboratory
systems contain only &~ 10%? to ~ 10?® atoms. Indeed, there are only ~ 10™ atoms in the entire
observable Universe® "% (not counting the unobservable rest of the Multiverse beyond)!®!~®* Thus,
at least initially upon their preparation, for all practical purposes we can be 100% sure that 100%
of the IV atoms comprising our system will be in their ground states with 100% probability, and
hence that this system of atoms will be at absolute zero with 100% probability.

Since stimulated emission is an essentially instantaneous process, there is essentially no time
during stimulated emission that puts the atoms comprising our system into their ground states for
heat leakage from ambient, as there is during Carnot!~>-%/Stirling® and absorption®” refrigera-
tion. Of course, if our system is in an ambient environment at temperature at 7 ypient > 0 K, after
being put into their ground states by stimulated emission the atoms comprising it will thermalize.
And after they thermalize, the probability that they are all in their ground states will be less than
100%, and hence this system of atoms will no longer be at absolute zero. But what about before
these atoms have time to thermalize? Immediately upon these atoms being put into their ground
states with 100% probability by stimulated emission, at least prima facie it seems that such a sys-
tem of atoms would indeed be in its ground state, and hence at absolute zero, even if only for an
instant (and hence, via repetition of the process, for any arbitrary number of instants). (This also
seems to be true concerning the method of refrigeration investigated in Ref. 50.)

Note that, like absorption refrigeration discussed in Section IIIC, stimulated-emission refrig-
eration is not an adiabatic process. Thus at least prima facie, might the unattainability formu-
lation of the Third Law of Thermodynamics, which forbids cooling any system to absolute zero
(0K) via adiabatic processes®®*** — but not necessarily via any process whatsoever>>>> — be
circumvented in principle via stimulated-emission refrigeration (and via the method of refriger-
ation investigated in Ref. 50)? Even if stimulated-emission refrigeration may not be feasible in
practice, the immediately preceding question emphasizes in principle (even if only as a thought
experiment’). AFEq_,; 2 1000k5Tambient likely implies an unfeasibly low T}pient 0N Earth, but as
we have noted there is the cold ambient temperature T,hient = 2.7 K of outer space. Moreover,
our considerations are in principle (even if only as a thought experiment,’), i.e., even if not feasible
in practice: Can stimulated-emission refrigeration at least attain cooling to 0 K from any T, pient
finitely greater, by however little, than 0 K, even in principle, and even if only for an instant (and
hence, via repetition of the process, for any arbitrary number of instants)? The issue of maintaining
0 K will be considered in Section I1IF /.

Hence, if the Third Law of Thermodynamics forbids cooling to absolute zero via stimulated-
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emission refrigeration, it cannot be because (1) an adiabat beginning at T initia1 > 0K cannot
reach 7> = 0K or (i) it would cost an infinite (or even an extraordinarily large finite) amount of
energy [as we have noted, the required energy is NAFE, ., /€ (given perfection, i.e., £ = 1, it is
NAFE,_,)]: It must be for other reason(s).

These issues will be further discussed in Sections IIIE, IIIF, and IIG, with our reasoning ex-
plained in Sections IIIF and IIIG.

E. Insulation with respect to heat is never perfect

Superinsulation with respect to electricity is the flip side of the coin of superconductivity with
respect to electricity. In superconductivity with respect to electricity, resistance to electric-current
flow becomes zero; in superinsulation with respect to electricity, it becomes infinite. But neither
superconductivity nor superinsulation with respect to heat flow exist. Superconductors with re-
spect to electricity are not also superconductors with respect to heat.** % And superinsulators with
respect to electricity are not also superinsulators with respect to heat.’~’! Moreover, in general, i.¢.,
not limited to considerations of superconductors and superinsulators with respect to electricity, in-
sulation with respect to heat can be good — but never perfect.”>”® Superinsulation, i.e., perfect
insulation, with respect to heat does not exist.

As a brief aside, we should also mention the related phenomenon of superfluidity, wherein
viscosity, 1.e., resistance to fluid flow, becomes very nearly zero. Superfluidity is not accompanied
by superconductivity with respect to heat, i.e., by resistance to eat flow becoming zero.”* "¢ The
thermal conductivity of helium (the isotope 4He ) becomes large — but nowhere nearly infinite
— at 1.92 K, and decreases both with decreasing temperature below 1.92 K and with increasing
temperature above 1.92 K.7476

As another brief aside, we note that in general, apart from considerations of superinsulation, su-
perconductivity, and superfluidity, significant differences exist between electrical conductivity and
heat conductivity. For example, consider purely solid materials (excluding, say, aerogels, which
are part solid and part gas) at room temperature, ~ 300 K. Even though at ~ 300 K both electrical
conductivity and heat conductivity in metals obtains via conduction electrons, at ~ 300 K the best
electrical conductors are ~ 10%° times as good as the worst ones, but the best heat conductors are
only ~ 10° times as good as the worst ones.

The analyses in Sections IIIB, IIIC, and IIID represent the ideal or perfect case, wherein the
onlyburden on a refrigerator is the extraction of heat from a cold reservoir, with no leakage of heat
whatsoever from ambient into the cold reservoir in the meantime. But, because perfect insulation
with respect to heat does not exist, heat leakage from ambient into any cold reservoir must be taken
into account.

In Section IIIF 7, we will show that, if heat leakage from ambient into a cold reservoir is finitely
greater than zero, however slightly finitely greater than zero, maintaining absolute zero for any
finite time, however short, is impossible via Carnot!~>36-5%/Stirling® or absorption®® refrigeration.
But merely attaining absolute zero for an instant (and hence, via repetition of the process, for any
arbitrary number of instants) via Carnot'>%%/Stirling® or absorption®® refrigeration seems not
to be ruled out, at least in principle. In Sections IIIF2 and IIIG, we will explore the possibility
that, since fluctuations can spontaneously transfer heat from a system being refrigerated against
the temperature gradient absolute zero can not only be artained viafluctuation, but also maintained for the time
finitely greater than zero that a fluctuation lasts.
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F. Caveats

1. Heat leakage from ambient into a cold reservoir: Increasing the difficulty of attaining — and
especially of maintaining — absolute zero

In deriving the energy required for cooling to absolute zero in Sections IIIB, ITIIC, and IIID, we
considered only the energy required for extracting heat from a cold reservoir. This is the ideal or
perfect case, assuming perfect insulation, i.e., with no leakage of heat whatsoever from ambient
into the cold reservoir. But, as noted in Section IIIE, perfect insulation with respect to heat does
not exist.

Thus we must take into account that insulation is never perfect and hence that there will always
be some leakage of heat from ambient into a cold reservoir.

Let dQ¢,/dt be the rate of heat leakage from ambient into a cold reservoir. (We employ star
superscripts as required to denote heat leakage from ambient into a cold reservoir and quantities
associated therewith. This is distinguished from extracting heat from a cold reservoir in the ideal
or perfect case, assuming perfect insulation, i.e., with no leakage of heat whatsoever into the cold
reservoir, as discussed in Sections IIIB, IIIC, and IIID.)

Applying the first line of Eq. (22), in the case of Carnot!~>-%38/Stirling® refrigeration with
TC initial — Lambient, the power P* required to offset dQ7. /dt is

P dW _ ( ambient 1> dQ¢ (34)

dt To dt -

(Note: We denote power by P; not to be confused with pressure, which we denote by P.) As
Carnot'>36-38/Stirling® refrigeration proceeds, T decreases. Let t be the time remaining until Ty
is reduced to absolute zero (0 K), if attaining 0 K is possible. Hence the work W* required to offset
Q¢ for given T} bient While attaining 7> = 0 K from a given Tt initia1 > 0 K 1s

0 tinitial tinitial T . d *
W= — / Prdt = / Pdi — / (;‘mbm - 1) e gy
. 0 0 Tc dt

initial

tinitial 99C tinitial dQ*
dt C
— 4 ambient / T dt — / dt
0 0

C dt
Linitial dflgt*c tinitial
ambient /0 TC’ dt /0 dQC
tinitial 9QC
- (Tambient/ ;_tdt> - Q?} (35)
0 C

By Eq. (34), P* — oo as T = 0K unless dQ,/dt decreases with decreasing T at least propor-
tionately to 7¢ itself. But dQF /dt increases monotonically with increasing Tympient — Z¢ unless
there is a more than compensating decrease in the thermal conductivity of insulating material sur-
rounding the cold reservoir. This requires that the thermal conductivity vanishes as T — 0 K.
But, as per Section IIIE, superinsulation with respect to heat does not exist. Hence this is impos-
sible. But even if P* = oo at Ty = 0K, this singularity occurs or/y at the point value 7 = 0K,
and hence the integrated W* of Eq. (35) can still be finite. If (dQF/dt) /Tc o< t" with n > —1,
this singularity is sufficiently weak that the integrated W* of Eq. (35) required to offset ()7, in
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order to attain 7o = 0K from a given 7T initia1 > 0K 1s finite. Thus even though there must be
some leakage of heat from ambient into the cold reservoir, by Egs. (22) and (35) the total work
wtotal — 17 1 1% required to attain T = 0 K via Carnot!'=%38/Stirling® refrigeration,

attain

T0 initial C
W;?ttaailn =W+ W*= <TC,initial/ —ch> — QC
0K To

tinitial 990
+ Tambient / ;—tdt - QZ‘
0 C

T¢ initial C tinitial 9QC
o~ / AT+ Tamien / Agt) - Qe - Qi (6
0 0

K c C

is then also finite. (To reiterate, (- is the heat that must be extracted from the cold reservoir
via Carnot!>638/Stirling® refrigeration to cool it from T¢yitia to T = 0K without any heat
leakage from ambient into the cold reservoir, and ()7, is the heat leakage from ambient into the
cold reservoir that occurs during this cooling process.) But, by contrast, applying Eq. (34), to
maintain a given T against heat leakage from ambient via Carnot!>36-5%/Stirling® refrigeration,

we require
0 Linitial tinitial dw*
rlklaintain - _/ P*dt — / P*dt - / dt
dt
t 0 0

initial

T .. tinitial *
_ ( ambient o 1) / dQOdt
TC 0 dt

Tambient / Tambient
= —1) [ dQs = ~1)Q;
(P 1) [z = (T 1)

= o0 if T = 0K and @, is finitely greater than 0. (37)

Thus, by Eq. (37), W ,;iain T€Quired to maintain To = 0K via Carnot!>0-8/Stirling® refrigera-
tion for any finite time, however short, is infinite if ()7, is finitely greater than 0, however slightly fi-
nitely greater than 0. It seems that this difficulty can be avoided only if superinsulation with respect
to heat can render 7, = 0. But, as per Section IIIE, superinsulation with respect to heat does not
exist. Hence this is impossible. Hence, while attaining absolute zero via Carnot'>°-8/Stirling®
refrigeration for an instant (and hence, via repetition of the process, for any arbitrary number of
instants) seems not to be ruled out in principle, maintaining it for any finite time, however short,
does seem to be.

Applying the first line of Eq. (28), in the case of absorption refrigeration,* the time rate of heat
flow dQ7%;/dt from a heat source or from a hot reservoir required to offset dQy,/dt is

dQy  Tu (TI 1> dQ¢

At Ty —T; \To dt

(38)

Hence the heat ()}, from a heat source or from a hot reservoir required to offset ()7, for given
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Tambient While attaining 7o = 0 K from a given T jpitia > 0K 15

0 dQ’;-I tinitial dQ*
* dt = A 1t
QH \/tinitial dt A dt
T tinitial T dO*
__Tu / <_f _ 1) QC 4
Ty =11 Jo Tc dt
T tinitial 990 Linitial dO*
__tH T, / —dt ¢ — / Qo dt
TH - T] 0 TC 0 dt

A o
TH /‘tlmtlal C / initial
__tn (7 di gy 40’
Tu —Tr \ "' Jo Tc 0 ¢

TH tinitial 990
=— | T dtqt — Q| . 39
(T / it - Q; (39)

By Eq. (38), dQj;/dt — oo as T = 0K unless dQf/dt decreases with decreasing T at least
proportionately to T itself. But dQ3;/dt increases monotonically with increasing Tompient — 10
unless there is a more than compensating decrease in the thermal conductivity of insulating material
surrounding the cold reservoir. This requires that the thermal conductivity vanishes as T —
0 K. But, as per Section IIIE, superinsulation with respect to heat does not exist. Hence this is
impossible. But even if dQ%; /dt = oo at Te = 0K, this singularity occurs oy at the point value
Te = 0K, and hence the integrated 5, of Eq. (39) could still be finite. If (dQF/dt) /Te o< t"
with n > —1, this singularity is sufficiently weak that the integrated ()}, of Eq. (39) required to
offset (Y7, in order to attain 7 = 0 K from a given T initian > 0 K is finite. Thus even though there
must be some leakage of heat from ambient into the cold reservoir, by Egs. (28) and (39) the total

heat Q};’f:tltain = Qu + Q% required to attain T: = 0 K via absorption refrigeration,>
T T'o,initial C
total * H
= + =—|(T —dIc | —
Hattain = @ + Q T T K T /O . 7, e Qc

TH Linitial di‘l?_z‘
— | T, At gt — Q)
+ Ty — T, I /0 T Qo

Ty Tc iitial - (7 tinitial 990
Ty —T; | (/OK To  © * /0 Te Qe —CQo|,  (30)

is then also finite. (To reiterate, ()¢ is the heat that must be extracted from the cold reservoir
via absorption refrigeration’® to cool it from T initial t0 T = 0 K without any heat leakage from
ambient into the cold reservoir, and Q7. is the heat leakage from ambient into the cold reservoir
that occurs during this cooling process.) But, by contrast, applying Eq. (38), to maintain a given
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T¢ against heat leakage from ambient via absorption refrigeration,>® we require

0 tiniti
dQ’;{ initial dQ*H
Q*Hmin in:_/ dt:/ —=dt
mainta Linitial dt 0 dt

T T tinitial *
__Tw (T / Qe 4,
Ty —1T7r \Tc 0 dt

Ty 17 Ty T7
=" (L 1) [aQr=-—"_(L-1)0:
Ty —1; (TC )/ Qe Ty — 17 <TC )QO
= o0 if Tz = 0K and Q) is finitely greater than 0. (41)

Thus, by Eq. (41), Q% maintaim required to maintain T = 0K via absorption refrigeration®® for
any finite time, however short, is infinite if ()¢, is finitely greater than 0, however slightly finitely
greater than 0. It seems that this difficulty can be avoided only if superinsulation with respect to
heat can render ()7, = 0. But, as per Section IIIE, superinsulation with respect to heat does not
exist. Hence this is impossible. Hence, while attaining absolute zero via absorption refrigeration’’
for an instant (and hence, via repetition of the process, for any arbitrary number of instants) seems
not to be ruled out in principle, maintaining it for any finite time, however short, does seem to be.

This seems to be true in general, with respect to any method of refrigeration, including there-
fore with respect to stimulated-emission refrigeration (recall Section IIID) and with respect to the
method of refrigeration investigated in Ref. 50: While attaining absolute zero via any method of
refrigeration for an instant (and hence, via repetition of the process, for any arbitrary number of
instants) seems not to be ruled out in principle, maintaining it for any finite time, however short,
does seem to be.

We note that, with the exception of one modification, the results obtained in this Section II1F/
remain valid even if we consider heat leakage from ambient into the cold reservoir as occurring
discretely, quantum by quantum, rather than continuously. For even though that would imply
changing each and every d in Eqgs. (34) — (41) to a A, these results would remain unchanged. The
one modification: While attaining absolute zero via any method of refrigeration for less than the
time required for leakage of one quantum of heat from ambient into the cold reservoir (and hence,
via repetition of the process, for any arbitrary number of such time intervals) seems not to be ruled
out in principle, maintaining it for any longer does seem to be.

2. Energy fluctuations and temperature fluctuations

2a. Thermal energy fluctuations and temperature fluctuations: An overview

There seems to be two viewpoints concerning energy fluctuations and temperature fluctuations
in systems in thermodynamic equilibrium with thermal reservoirs in general,”” and with thermal
reservoirs very near but not at absolute zero in particular.?’-’#7° We consider a system in thermo-
dynamic equilibrium with a thermal reservoir at fixed temperature T} in general’’ (in the cases of
interest, Tes is low but nonzero?”:879),

One viewpoint ascribes to fluctuations only in energy.?””” According to this viewpoint, the tem-
perature of a system in thermodynamic equilibrium with a thermal reservoir at fixed temperature
T:es (In the cases of interest, low but nonzero fixed temperature 7,¢) is itself also fixed at 7}, but
the system’s energy fluctuates owing to energy exchanges with the thermal reservoir.?’

The other viewpoint ascribes to fluctuations in both energy and temperature.”’~”* According
to this viewpoint, owing to energy exchanges with a thermal reservoir at fixed temperature 7, a
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system’s temperature as well as its energy fluctuates. When the system fluctuates to higher-than-
average energy, it also fluctuates to higher-than-average temperature, i.e., to a temperature higher
than 7}..s; when the system fluctuates to lower-than-average energy, it also fluctuates to lower-than-
average temperature, i.e., to a temperature lower than T}.,.””"°

But the validity of the concept of temperature requires that the entire probability distribution
of a system’s energy corresponds to thermodynamic equilibrium, i.e., that it is a Boltzmann dis-
tribution corresponding to the given temperature. It is not sufficient, for example, merely for the
peak of a system’s energy distribution to move to a higher-than-average value when it fluctuates
to higher-than-average energy, and to a lower-than-average value when it fluctuates to lower-than-
average energy. Thus the requirement for the validity of the concept of temperature fluctuations
1s that a system relax to internal thermodynamic equilibrium, i.e., to a Boltzmann distribution, in
much less time (say, in < 1/10 as much time) than that required for a given energy fluctuation.

Even so, complete relaxation to exactly a Boltzmann distribution seems to be a stricter re-
quirement than necessary. Relaxation to close enough to exactly a Boltzmann distribution seems
sufficient for validity for all practical purposes of the concept of temperature during an energy
fluctuation, and hence for validity for all practical purposes of construing this energy fluctuation
to also be a temperature fluctuation.

More quantitatively, let a system be in thermodynamic equilibrium with a thermal reservoir at
fixed temperature T, let (F) be the system’s average energy, and consider a fluctuation A Fg,
of the system’s energy away from this average value (F) (A Ejgy. could be positive or negative).
Let Pr; 5 (£) be the probability that the system is in quantum state j corresponding to internal
thermodynamic equilibrium, i.e., to a Boltzmann distribution, when its energy happens to be £/ =
(E) + AEqy, let Pr; (E) be the probability that it is actually in this quantum state j when £ =
(E) + AEgyc, let APr; (E) = Pr; (E) — Prj g (E), and let (At) be the average time required
for an energy fluctuation AFjy,. away from (E). Thus, more quantitatively, the requirement for
the validity for all practical purposes of construing this energy fluctuation A Fy,. away from (FE)
to also be a temperature fluctuation ATy, away from Ty is: for all Pr;s, |APr; (E)|/ Pr; g (E)
relaxes to a value < |[AFEg,| / (E) (say, to a value < |AEjg,.| /10 (E)), in a time < (At) (say, in
a time < (At) /10).

This requirement for the validity of the concept of temperature fluctuations, as discussed in this
Section I1IF2a, seems to be assumed to be met, at least implicitly, in Refs. 78 and 79.

Reference 27 considers energy fluctuations, and Refs. 78 and 79 consider both energy and
temperature fluctuations, with respect to systems at low but nonzero temperatures. But we again
note that this issue has been investigated more generally.”’

2b. Quantum nonthermal energy fluctuations: an overview

There is still the issue of the energy-time uncertainty principle, which we have not thus far
considered. We describe two viewpoints.®®#! According to the first viewpoint,®® the energy-time
uncertainty principle does not effect fleeting violations of energy conservation (the First Law of
Thermodynamics): energy is strictly conserved, but measuring it entails significant uncertainty if
a system’s state can only be maintained for a very short time, let alone an infinitesimally short
time (an instant). According to the second viewpoint,®! the energy-time uncertainty principle does
effect fleeting violations of energy conservation (the First Law of Thermodynamics): a system’s
energy does not have a well-defined value if the system’s state can only be maintained for a very
short time, let alone an infinitesimally short time (an instant). According to both viewpoints,3*8!
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the minimum root-mean-square (rms) energy-time uncertainty product,

(|AE| At) = h/2 = 1.0546 x 107** Js, (42)

rms,min

is very small (if expressed in ST units). (The absolute value |AFE| is employed because AFE could
be positive or negative as per both viewpoints:3*#! As per the first viewpoint,** a measurement
uncertainty could be either positive or negative; as per to the second viewpoint,®! energy could
either be borrowed or discarded.)

The second viewpoint®! goes beyond Eq. (42), and gives the probability that the energy-time
uncertainty product equals or exceeds a given value |AF| At as the exponentially-decreasing
function®!

Pr (> |AE| At) = e (AEIAD/IABIA s suin — o= 2AEIAY/R (43)

[The exponential form of Eq. (43) is reminiscent of the Boltzmann distribution, but like most
analogies, this one should not be pressed too far. Quantum probabilities arise from probability
amplitudes, i.e., from pre-probabilities,®> and hence entail interference effects,®? which are ab-
sent in thermal-fluctuation probabilities as per the Boltzmann distribution.®?] As per the second
viewpoint,’! Pr (> |AFE| At) is the probability that, owing to quantum energy fluctuations effected
via the energy-time uncertainty principle, there can obtain nonconservation (borrowing or discard-
ing) of energy of magnitude |A F| or more for a time At, or, alternatively, of magnitude |AF| for a
time At or longer. If a system’s first excited state is, say, 10 eV = 1.602 x 10~ J (a typical value)
above its ground state, even according to the second viewpoint®!' there is negligible probability
that quantum energy fluctuations effected via the energy-time uncertainty principle can boost the
system from its ground state to its first excited state even for a time interval At ~ 10~ s. Perhaps
a time interval At ~ 1015 s, even though not infinitesimally short, is nonetheless short enough to
qualify as an instant.

But even this seems to miss the main point. Even according to the second viewpoint:®! (i) It is
unclear whether quantum energy fluctuations effected via the energy-time uncertainty principle that
borrow energy temporarily boost a system out of its ground state, or instead temporarily increase its
energy within the ground state itself. Certainly those that discard energy temporarily decrease its
energy within the ground state itself. (i1) Most importantly: Unlike (classical or quantum) thermal
energy fluctuations effected via heat flow to a system from its thermal reservoir or vice versa,
quantum energy fluctuations effected via the energy-time uncertainty principle as per the second
viewpoint®! do not entail heat flow to or from a system and hence do not temporarily raise or
lower its temperature. Thermal energy fluctuations are thermodynamic, i.e., heatlike. By contrast,
energy fluctuations effected via the energy-time uncertainty principle as per the second viewpoint®!
are purely dynamic, i.e. worklike. If a thermal fluctuation in accordance with the Boltzmann
distribution accelerates (decelerates) a Brownian particle, there is (keeping in mind the caveats
discussed in Section IIIF2a) accompanying cooling (warming) of the Brownian particle and its
thermal surroundings such that energy conservation (the First Law of Thermodynamics) is strictly
obeyed. By contrast, if a quantum energy fluctuation effected via the energy-time uncertainty
principle accelerates (decelerates) a Brownian particle as per the second viewpoint,?! it does so by
dint of fleeting violation of energy conservation, and hence no accompanying cooling (warming) of
the Brownian particle and its thermal surroundings. This 1s perhaps most convincingly construed
by considering energy fluctuations effected via the energy-time uncertainty principle in a system
in its ground state and hence at absolute zero (0 K) that discard rather than borrow energy. Such
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fluctuations — indeed no fluctuation whatsoever — can lower the temperature of a system in its
ground state to below 0 K!

Hence, we need take into account only thermal energy/temperature fluctuations in consider-
ing the increase or decrease in difficulty effected by fluctuations in attaining and maintaining ab-
solute zero. In considering temperature fluctuations, we keep in mind the caveats discussed in
Section IIIF 2a.

2c. Energy/temperature fluctuations: Increasing the difficulty of attaining, let alone maintaining,

absolute zero

It has been stated that energy fluctuations?’ and temperature fluctuations’®” render even the

attaining, let alone the maintaining, of absolute zero (0 K) at least more difficult and perhaps im-
possible, because they could render it impossible at least in practice and possibly even in principle
for the temperature to attain 0 K, let alone to be maintained at 0 K. Moreover, even if absolute zero
could be attained and even maintained, it has furthermore been stated that energy fluctuations®’
and temperature fluctuations’®’” render confirmation that 0 K has actually been reached at least
more difficult and perhaps impossible, at least in practice and possibly even in principle.?”787°

2d. Energy/temperature fluctuations: Decreasing the difficulty of attaining, and even maintaining,
absolute zero: Absolute zero via fluctuation?

But fluctuations can work both ways,?’ i.e., either hindering or helping in attempting to attain
absolute zero.?” (See especially the last paragraph of Ref. 27.) Let Ej be the ground-state energy
of a system in thermodynamic equilibrium with a thermal reservoir at fixed temperature 7} (in
the cases of interest, low but nonzero fixed temperature 7}.s). The help can arise because, owing to
fluctuations — specifically, owing to maximal fluctuations to lower-than-average energy [A Eg,. =
— ((E) — Ey) = Ey — (E)] — the values of the entropy and also of all other thermodynamic
properties of such a system can fluctuate to those corresponding to 0 K. For a maximal fluctuation
to lower-than-average energy [AFqu. = — ((F) — Ey) = Ey — (E)] will leave all of the system’s
atoms in their ground states and thus the entire system in its ground state of energy Fj!

Reference 27 ascribes strictly to the energy-fluctuation viewpoint. But while a maximal fluc-
tuation to lower-than-average energy lasts, the requirement for the validity of the concept of tem-
perature fluctuations, as discussed in Section IIIF2a, is not merely met but maximally met: the
only occupied state is then the ground state, hence Pr; (Ey) = Pr; 5 (Ey) = 1 and APr; (E) =
Pr; (Ey) — Prj s (Ep) =1 —1 = 0. Thus is then not a maximal fluctuation to lower-than-average
energy [AFEg.. = — ((F) — Ey) = Ey — (F)], while it lasts, also a temperature fluctuation to
absolute zero??”-’%7 And since any fluctuation lasts for a time finitely greater than zero, is not ab-
solute zero thereby not merely attained, but also maintained for a time finitely greater than zero —
specifically, for the time finitely greater than zero that a maximal fluctuation to lower-than-average
energy lasts??”7%7 Fluctuations can spontaneously transfer heat from a system being refrigerated
against the temperature gradient: hence insulation with respect to heat never being perfect (recall
Section IIIE) does not preclude not only attaining absolute zero via fluctuation, but also maintain-
ing it during the finite time interval that such afluctuation lasts. Indeed, perfect insulation prec/udes:thermal fluctuations!

Of course, in the best-case scenario for attaining absolute zero via fluctuation, preferably 7
should be as low as possible. (We note that the cosmic background radiation of outer space is an
ambient thermal environment that can serve as a thermal reservoir at T, pient = Tres = 2.7 K.) A
system such as that described in Section IIID, wherein AFEy_,; 2 1000kgT ambient, Will be in its

~Y

ground state almost all of the time. Maximal fluctuations to lower-than-average energy characterize
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by far the most probable state of such a system. Even on those rare occasions when the system
fluctuates to above its ground state, the Poincaré recurrence time®® for its return to its ground state
will be extremely short.

But let us also consider the worst-case scenario for attaining absolute zero via fluctuation.
Even if Tes (OF Tampient) 1S high and even if our system is large, maximal fluctuations to lower-
than-average energy are improbable but not impossible: hence, their average time interval between
their recurrences, i.e., the Poincaré recurrence time,®’ is finite, not infinite. In this regard, it may
be worthwhile to recall this famous quote from Josiah Willard Gibbs with respect to the Second
Law of Thermodynamics: “the impossibility of an uncompensated decrease of entropy seems to be
reduced to an improbability”®*. If it turns out that absolute zero can be attained, even in principle,
only via maximal fluctuations to lower-than-average energy, then a corresponding statement with
respect to the unattainability formulation of the Third Law of Thermodynamics would be: Even
1f Thes (O Tambient) 18 high and even if our system is large, the impossibility of attaining absolute
zero seems to be reduced to an improbability. If it turns out that absolute zero can furthermore
also be maintained for a time finitely greater than zero (the time that a maximal fluctuation to
lower-than-average energy lasts), even in principle, only via maximal fluctuations to lower-than-
average energy, then a corresponding statement with respect to the unattainability formulation of
the Third Law of Thermodynamics would be: Even if Ties (0r Thmpient) 18 high and even if our
system is large, the impossibility of not only attaining absolute zero, but then also maintaining
it for a time finitely greater than zero (the time that a maximal fluctuation to lower-than-average
energy lasts), seems to be reduced to an improbability. And, again, this is the worst-case scenario.
In the best-case scenario, described in the immediately preceding paragraph, maximal fluctuations
to lower-than-average energy characterize by far the most probable state.

G. Experimental confirmation that a system’s temperature is absolute zero by weighing

At least in principle, it can be experimentally confirmed that a maximal fluctuation to lower-
than-average energy has reduced a system’s temperature to absolute zero without any heat leakage
whatsoever into the system. Simply place the system on an extremely sensitive and extremely accu-
rate scale. (A sufficiently sensitive and sufficiently accurate scale is beyond current technology, but
it violates no law of physics; hence it is valid to employ it, at least in a thought experiment.”) Let the
system’s total energy when all of its atoms are in their ground states and thus the entire system is
in its ground state — and hence when its temperature is absolute zero — be Ej. Let its fofal energy
when one — and only one — of its atoms is in its first excited state and all of its other atoms are
in their ground states and thus the entire system is in its first excited state be £y + AFEy_,;. Hence
the corresponding masses are, respectively, Fy/c? and (Ey + AEy_.1) /c?, and the correspond-
ing weights in a uniform gravitational field g are, respectively, Fog/c? and (Ey + AEq_.1) g/c>.
Hence, considering as a specific example the system discussed in Section IIIF2d, it can in prin-
ciple be experimentally confirmed that a maximal fluctuation to lower-than-average energy has
reduced the temperature to absolute zero by weighing the system. Because (i) weighing a system
requires zero heat leakage into it, (ii) maximal fluctuations to lower-than-average energy occur
spontaneously in the face of lack of thermal isolation and spontaneously transfer heat from a sys-
tem being refrigerated against the temperature gradient, and (iii) for any finite-size system, A Fjy_.q
1s finite — not infinitesimally small: the “profound problems of absolute thermal isolation and in-
finitely precise temperature measurability” seem, at least prima facie and at least in principle,
to be circumvented. (Of course, if the entire system is in its second or higher excited state, its
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energy exceeds that of its ground state by finitely more than A Fj_ .1, but the essence of the above
line of reasoning is unchanged.) And, again, “infinitely precise temperature measurability”>® is not
required, because A Fy_,1 is finite — not infinitesimally small. Concerning (ii) immediately above:
Insulation with respect to heat never being perfect (recall Section IIIE) does not preclude not only
attaining absolute zero via fluctuation, but also maintaining it during the finite time interval that
such a fluctuation lasts. Indeed, perfectinsulation prec/udesthermal fluctuations!

By contrast, other methods of experimentally confirming that absolute zero has been attained
entail greater difficulties, even in principle. Three examples: (i) Employing a thermometer entails
heat leakage from the thermometer into a system at absolute zero (unless the thermometer itself
is also at absolute zero). Thus (unless the thermometer itself is also at absolute zero), after the
thermometer has been employed the system will be warmer than absolute zero and the thermometer
will be cooler than its initial temperature. Of course, based on the heat capacities of both the system
and the thermometer as functions of temperature, this can be accounted for, and it can thereby be
ascertained whether or not the system was at absolute zero before the thermometer was employed.
But this is an extra complication. (ii) Since (0V/9T), — 0as T — 0K,*® infinitely precise™
volume measurements at constant pressure would be required to ascertain whether or not a system
maintained at constant pressure is at absolute zero:*>® compare the finiteness of AE,_;. (iii)
Since (9P/AT),, — 0as T — 0K,*® infinitely precise® pressure measurements at constant
volume would be required to ascertain whether or not a system maintained at constant volume is
at absolute zero:*% compare the finiteness of AFEq_,;.

In general, the weight of a system alone cannot reveal its temperature, without one additional
requirement being met. For the weight of a system cannot distinguish between random, thermal
energy, which contributes to temperature, and nonrandom, nonthermal energy, which does not.
Consider supplying a given amount of energy to a system (a) thermally,* via heat and/or via work
frictionally dissipated into heat, thereby raising its temperature, versus (b) supplying the same
amount of energy nonthermally, via work sequestered, say, by compressing a spring, hence leaving
its temperature unchanged. Both (a) and (b) result in the same increase in weight. And consider
extracting a given amount of energy from a system (c) thermally,® via heat, thereby lowering
its temperature, versus (d) extracting the same amount of energy nonthermally, via work, say, by
relaxing a spring, hence leaving its temperature unchanged. Both (c) and (d) result in the same
decrease in weight. Thus the one additional requirement in general is that all energy transfers
to and/or from a system must be only of type (a) and/or type (c), respectively, if the system’s
temperature is to be determined by its weight alone. Or, if there are energy transfers to and/or
from a system of type (b) and/or type (d), respectively, this must be accounted for in addition to
the system’s weight to determine its temperature.

But in the special case wherein all of a system’s atoms are in their ground states and thus
the entire system is in its ground state, the system’s weight alone — without the aforementioned
additional requirement — always experimentally confirms that its temperature is absolute zero,
because there is only one way that all of any system’s atoms can be in their ground states.

We discussed experimental confirmation that a system’s temperature is absolute zero by weigh-
ing with respect to the specific example of the system discussed in Section IIIF2d, wherein absolute
zero 1s attained via a maximal fluctuation to lower-than-average energy. But at least in principle
weighing seems to be a method of experimentally determining whether or not a system’s temper-
ature has been reduced to absolute zero via any (nonadiabatic) process whatsoever.”*>> Nonethe-
less, at least prima facie, it seems that a maximal fluctuation to lower-than-average energy, as
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discussed in Section I1IF2d, seems to be the easiest and most likely method of attaining absolute
zero (0 K) — if 0K can be attained at all. For fluctuations occur spontaneously, and hence re-
quire no effort. Thermal fluctuations in general, and maximal ones to lower-than-average energy in particular, can
occur onfyif insulation with respect to heat is zzperfect (compare Section IIIE). And, again, "infinitely precise

)

temperature measurability™ is not required, because AEy_, is finite — not infinitesimally small.

IV. HOT AND COLD RESERVOIRS THAT CAN AND CANNOT MAINTAIN A CON-
STANT TEMPERATURE

We now discuss the nature of hot and cold reservoirs that can and cannot maintain a constant
temperature. In general, hot and cold reservoirs be of either type. But we will show that a cold
reservoir initially at absolute zero (0 K) or even at a temperature above but arbitrarily close to 0 K
must — not merely can — be of the latter type.

In order for a hot reservoir to maintain an exactly® constant temperature 7;,*° energy must be
continually added to it if it is the heat source for a heat engine, and energy must be continually
extracted from it if it is the heat sink for a refrigerator or heat pump.®® (This is most commonly
done for heat engines via combustion of fuels, solar thermal energy input, etc.) Likewise, in order
for a cold reservoir to maintain an exactly® constant temperature T¢,* energy must be continually
extracted from it if it is the heat sink for a heat engine, and energy must be continually added
to it if it is the heat source for a refrigerator or heat pump.* (This is most commonly done for
heat engines, whose cold reservoir is most typically the ambient atmosphere, because the ambient
atmosphere is in radiative thermal contact with the even colder 2.7 K vastness of outer space.)

A hot reservoir that is the heat source for a heat engine or a heat sink for a refrigerator or heat
pump can maintain a very nearly but not exactly constant temperature 7}, even without compen-
sating additions or extractions of energy (as described in the immediately preceding paragraph) if
the heat supplied from it to the heat engine or rejected to it by the refrigerator or heat pump is only
a tiny fraction of the hot reservoir’s total reserve of thermal energy, km fOTI? CdT. Likewise, a
cold reservoir that is the heat sink for a heat engine or a heat source for a refrigerator or heat pump
can maintain a very nearly but not exactly constant temperature 7, even without compensating
additions or extractions of energy (as described in the immediately preceding paragraph) if the
heat rejected to it by the heat engine or extracted from it by the refrigerator or heat pump is only a
tiny fraction of the cold reservoir’s total reserve of thermal energy, km L)Tf{j CdT'.

In usual considerations' © of the operation of heat engines, refrigerators, and heat pumps, both
the hot and cold reservoirs are assumed to have such huge total reserves of thermal energy that, even
without compensating additions or extractions of energy, temperature changes of both reservoirs
are a negligible fraction of their initial temperatures.' © And in most cases, such compensating
additions or extractions of energy are made.'® But there are also well-known examples for which
this is not the case.

Let us consider two of the simplest of these well-known examples. The first example con-
sists of hot and cold reservoirs both of the same mass m and the same constant heat capacity
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C' = km at initial temperatures 1 and T,z powering a Carnot,' Stirling,® or any other perfect,
reversible heat engine'° until the temperature difference between the two reservoirs has been com-
pletely neutralized and hence the maximum possible work W, allowed by the First and Second
Laws of Thermodynamics has been extracted.”™®! In this case the final temperature is the geo-
metric mean of Ty and Ty, i.e., (TCTH)l/ 2 9091 The initial thermal energy owes to the arithmetic
mean of Ty and T¢, i.e., (Tc + Ty) /2 and therefore iS Einermalinitial = 26m [(To + Tw) /2] =

km (Te + Ty ).”*°' And the final thermal energy is Fipermal final = 25M (TCTH)l/ 2 Hence

Wmax - Ethermal,initial - Ethermal,ﬁnal

= KM [TC + Ty —2 (TCTH)l/Q] . (44)

The heat supplied by the hot reservoir is

Ty — Te

> (45)

Qu = km
The instantaneous Carnot efficiency decreases monotonically from its initial value 1 — (7¢/Ty)
towards its final value of zero. The overall Carnot efficiency is

W 2|Te+ T2 (TCTH)W]

rnot — - . 4
€Carnot QH TH — TC ( 6)

In the second example,” the cold reservoir’s temperature T¢ is fixed but the temperature T of a
hot reservoir of mass m and constant heat capacity C' = xkm is to be reduced to T via powering
a Carnot,' Stirling,® or any other perfect, reversible heat engine!™® until the maximum possible
work Wy,.x allowed by the First and Second Laws of Thermodynamics has been extracted.”? In
this case”

T
Winax = KM l(TH —Te) — Teln —H}
Tc
Ty
= |Ty—Tc|14+In—]], (47)
Tc

and the heat supplied by the hot reservoir is
QH = RM (TH — Tc) . (48)

In this case also, the instantaneous Carnot efficiency decreases monotonically from its initial value
1 — (T¢/Ty) towards its final value of zero. In this case the overall Carnot efficiency is

Carnot Q H TH — TC TH _ TC
H—%@+mh)
N =L (49)
Ty — To

There are numerous other examples of cases wherein changes in the temperatures of hot and/or
cold reservoirs are not negligible and therefore must be taken into account.”*** Thus, even under
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ordinary circumstances, 1.e., with temperatures of hot and/or cold reservoirs within ordinary ranges,
it is not uncommon that changes of temperatures of hot and/or cold reservoirs that are not small
compared to their initial temperatures can occur.”*>*

But for a cold reservoir initially at absolute zero (0 K), changes of temperature that are not
small, but an infinite number of times greater than its initial temperature of 0K, must — not
merely can — occur. Consider a cold reservoir initially at absolute zero, assuming that such can
exist for a Carnot,'> Stirling,® or any other perfect, reversible heat engine. If the Second Law of
Thermodynamics is to be obeyed, enough heat must be rejected into this cold reservoir to increase
its entropy enough to offset the entropy decrease of the hot reservoir: recall Egs. (1) and (2). And
the rejection of even the tiniest amount of heat into a cold reservoir at absolute zero (0 K) results
in a temperature greater than 0 K, which, however low, is an infinite number of times greater than
its initial temperature of 0 K. Thus the rise in temperature of such a cold reservoir must always be
accounted for, we have done in this chapter. Even if only a cold reservoir initially at a temperature
above but arbitrarily close to absolute zero is available, the rejection of even a tiny amount of heat
into it must — not merely can — result in a temperature greater than its initial temperature by a
huge (albeit not infinite) number of times. Hence the rise in temperature of cold reservoirs initially
at 0 K or even above but arbitrarily close to 0 K must always be accounted for, as we have done in
this chapter.(Of course, if there is any imperfection or equivalently any irreversibility, the increase
of the temperature of the cold reservoir will be greater than with perfect, reversible operation.)

Of course, in all cases, by the First and Second Laws of Thermodynamics:®—4

Wmax - QH - QC
Wmax _ QH_QC :1_@
Qu Qu Qu

subject to the condition

— €Carnot —

Tc final dQ TH final dQ
C H
ASua = ASc+ASy = [T [T
T¢ initial TO T'H initial TH
Tc final dQ TH final dQ
C H
T0 initial T TH initial Th

What has been stated in this Section IV with respect to hot and cold reservoirs obviously also
applies with respect to intermediate-temperature reservoirs employed in absorption refrigeration.

V. CONCLUSION

It is usually assumed that, if a cold reservoir at absolute zero (7> = 0K) is available, then
a (perfect, reversible) Carnot heat engine can operate at 100% efficiency, converting 100% of the
heat input () from its hot reservoir into work W. We discussed (perfect, reversible) Carnot heat
engines employing cold reservoirs at 7o = 0K in Section II. We showed that even a (perfect,
reversible) Carnot heat engine employing a cold reservoir at Tz = 0K cannot operate at 100%
efficiency: Even if a cold reservoir at absolute zero (T = 0K) is available, if the Second Law
of Thermodynamics is not to be violated even a (perfect, reversible) Carnot heat engine must
reject some waste heat into it. Hence (1) even if a cold reservoir at absolute zero (7 = 0K) is
available, it could remain at 0 K only initially [i.e., even if Tc initiat = 0K, T > 0 K immediately
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thereafter when even a (perfect, reversible) Carnot heat engine begins operating], and (i1) even a
(perfect, reversible) Carnot heat engine employing a cold reservoir at Tx = 0 K must operate at less
than 100% efficiency, converting less than 100% of the heat input Q5 from its hot reservoir into
work W. (Of course, if there is any imperfection or equivalently any irreversibility, the inequality
Te > 0K immediately thereafter will be stronger than with perfect, reversible operation.) By
applying the First and Second Laws of Thermodynamics, we derived the entropy increase and the
waste heat that must be rejected into the cold reservoir, and the work output and efficiency of a
(perfect, reversible) Carnot heat engine, if a cold reservoir initially at T = 0 K is available.

Our results are also valid for non-Carnot-cycle heat engines that equal Carnot-cycle heat en-
gines in efficiency, e.g., Stirling-cycle heat engines.® [The Stirling cycle is more complicated than
the Carnot cycle;® hence, we focused on the Carnot cycle, which is the archetype, and probably
also the simplest conceptually, of maximally thermodynamically efficient heat-engine (and refrig-
erator and heat-pump) cycles.' ] Moreover, except for the utmost-low-temperature limit discussed
in Section [IC, our results are also valid to within an excellent approximation even if the cold reser-
voir is lnltlally at TC,initial > 0K with 0K < TC,initial < TC,ﬁnal-

While there are challenges®*® to the Second Law of Thermodynamics (Refs. 95 and 96 being
just two samples, but hopefully two representative samples, from a vast literature concerning such
challenges, especially during the past few decades), it has been correctly pointed out that: “If
the Second Law should be shown to be violable, it would nonetheless remain valid for the vast
majority of natural and technological processes™’. Hence, hopefully, even if the Second Law
should be shown to be violable, our analyses in this chapterwould still be helpful within what would
still be its vast range of validity.

In Section III, we considered the possibility, if only in principle (even if only as thought
experiments’) rather than in practice, of the existence of a cold reservoir at absolute zero via
Carnot, absorption, and stimulated-emission refrigeration. Caveats concerning heat leakage from
ambient into cold reservoirs and energy/temperature fluctuations were discussed next, as well as the
possibility of a system spontaneously attaining absolute zero via fluctuation. We then considered
weighing a system to experimentally determine whether or not a system’s temperature is absolute
zero. We accepted the formulations of the Third Law of Thermodynamics that deny the possibility
of attaining absolute zero via adiabatic processes,’®>%*! and also those concerning the entropy at
absolute zero.'*! We posed questions concerning only the formulations of the Third Law of Ther-
modynamics that deny the possibility of attaining absolute zero via any process whatsoever.>>>>

In Section IV, we discussed the nature of hot and cold reservoirs that can and cannot maintain
a constant temperature. In general, hot and cold reservoirs can be of either type. But we showed
that a cold reservoir initially at absolute zero (0 K) or even at a temperature above but arbitrarily
close to 0 K must — not merely can — be of the latter type.

In the Appendix, we will discuss an interesting aspect of the relationship between entropy and
heat capacity. This relationship per se is true in general, but it is typically manifested only by
certain systems at very low temperatures. Our example entails conduction electrons in metals.
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APPENDIX: WHEN ENTROPY AND HEAT CAPACITY HAVE THE SAME NUMERI-
CAL VALUE: QUANTITATIVELY BUT NOT QUALITATIVELY EQUAL

It 1s of course well-known that both entropy and heat capacity have the same units (energy +
temperature, J / K in SI units). But it is possible for both entropy and heat capacity to also have
the same numerical value.

Consider heat capacities of the form given by Eq. (6), i.e., C' = kmT™ (n > 0). The entropy
of a system with such a heat capacity and with a nondegenerate!*2! ground state is, at temperature

T,
T T / T / T
d cdrT T"dT AL
S:/ —6/2:/ :/fm/ :/-im/ -t = B (A1)
ok T’ 0K 0K 0K n

T’ T’

The second and third terms in Eq. (A1) are general expressions entailing the heat that must be
added to such a system to raise its temperature from 0 K to 7', while the last two terms thereof
are specific expressions valid if C' = kmT"™ (n > 0). If n = 1, i.e,, if C = wmT, as is the
case (to within an excellent approximation®*=?) for conduction electrons in metals at very low
temperatures,’®32% then also S = kmT, i.e.,

kmT =85S=C < rmT =C=S8, (A2)

where the = sign denotes “quantitatively but not qualitatively equal”, or, equivalently, “numerically
but not conceptually equal”.”®

Thus if heat capacity is directly proportional to temperature, both entropy and heat capacity
have not only the same units but also the same numerical value. This statement is true in general.
But heat capacities directly proportional to temperature are typically actually manifested only by
certain systems at very low temperatures, our example being conduction electrons in metals.

Even though in this case both entropy and heat capacity have not only the same units but
also the same quantitative, i.e., numerical, value, they are, in this case as in all cases, of course
qualitatively, i.e., conceptually, unequal.”® Entropy is Boltzmann’s constant, kp, times the natural
logarithm of the multiplicity €2, i.e., S = kp In 2; heat capacity is the energy that must be imparted
to a system via heat, or via work frictionally dissipated into heat, to raise its temperature by 1 K.%

Even if the ground state is degenerate,'*! i.e., even if its degeneracy'*>! is gy > 1, we would
still have, if C = kmT™ (n > 0),
T?’l
S(T) 5 (0K) = (A3)
n
and hence, if n = 1, i.e., if C' = xmT,
kmT =S (T)—-S(0K)=S5(T)—kglngy =C
s wmT =C=S5(T) =S (0K) = S (T) — kg In go. (A4)
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