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Abstract  
 

In computational seismology, receiver functions represent the 

impulse response for the earth structure beneath a seismic station 

and, in general, these are functionals that show several seismic 

phases in the time-domain related to discontinuities within the 

crust and the upper mantle. This paper introduces a new 

technique called generalized pattern search (GPS) for inverting 

receiver functions to obtain the depth of the crust–mantle 

discontinuity, i.e., the crustal thickness H, and the ratio of crustal 

P-wave velocity Vp to S-wave velocity Vs. In particular, the 

GPS technique, which is a direct search method, does not need 

derivative or directional vector information. Moreover, the 

technique allows simultaneous determination of the weights 

needed for the converted and reverberated phases. Compared to 

previously introduced variable weights approaches for inverting 

H-κ stacking of receiver functions, with κ = Vp/Vs, the GPS 

technique has some advantages in terms of saving computational 

time and also suitability for simultaneous determination of 

crustal parameters and associated weights. Finally, the technique 

is tested using seismic data from the East Africa Rift System and 

it provides results that are consistent with previously published 

studies. 
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Introduction  
 

Receiver functions are time series determined by the 

deconvolution of vertical component seismograms from radial 

component seismograms [1]. Receiver functions consist of a 

number of seismic phases, the arrival times of which are 

correlated to discontinuities in the crust and upper mantle. In 

other words, receiver functions represent the impulse response of 

the structure of the earth beneath the seismic station [2]. An 

algorithm called H-κ stacking of receiver functions has been 

used to estimate crustal thickness H and crustal Vp/Vs ratio κ, 

where Vp and Vs represent the P-wave and S-wave velocities, 

respectively, of the seismic wave in the crust [3]. Since its 

inception, H-κ stacking has been applied in many crustal 

structure studies (e.g., [4–6]). In some of these studies, the 

values of weights, which are necessary components for the H-κ 

stacking procedure, have been assigned through assumptions or 

using the Monte Carlo simulation technique (e.g., [3,7) or by 

using genetic algorithms (GA) [8]. The main objective of this 

paper is to harness the generalized pattern search (GPS) 

technique to simultaneously determine optimal or near optimal 

values of weights along with H and κ values. 

 

Dennis and Torczon [9] introduced a multidirectional search 

algorithm, and this algorithm was considered a first step towards 

a general purpose optimization algorithm with promising 

characteristics for parallel computation [10]. Succeeding work 

based on the multidirectional search algorithm was then bound 

for a class of algorithms that allow more flexible computation 

[11]. Following the multidirectional search algorithm, the 

generalized pattern search (GPS) has been developed between 

the 1990s and early 2000s [10–17]. The GPS is a direct search 

optimization technique that does not require the gradient or 

higher derivative of the objective function to solve the 
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optimization problem. Traditional optimization methods, on the 

other hand, utilize the gradient or higher derivatives information 

in their search for an optimal solution. The direct methods of 

pattern search are useful tools when the problem has an objective 

function that is not differentiable and/or not continuous [17–19]. 

 

In the next few sections, we provide the method making use of 

receiver functions inversion and H-κ stacking algorithm 

followed by the GPS technique. Then, we offer our results of the 

implementation of the GPS technique for optimal or near optimal 

receiver function inversion. A discussion and conclusion on the 

current results and a comparison with previous approaches is 

provided at the end. 

 

Materials and Methods  
Receiver Functions  
 

In the time domain, receiver functions are computed using 

deconvolution of a vertical component seismic signal from a 

radial component seismic signal. Since the iterative 

deconvolution method developed by Ligorria and Ammon [20] is 

well-established in receiver function processing, we 

implemented that method for determining the receiver functions 

in our study. However, we would like to point out that some new 

algorithms and developments in the area of deconvolution have 

also been introduced by different researchers more recently. 

Some of the advances made are in the field of receiver function 

processing using H-κ stacking. One of these advances, for 

example, was introduced by Li and co-workers and it introduces 

a generalized H-κ method with harmonic corrections on Ps and 

its crustal multiples in receiver functions [21]. Another similar 

development is the introduction of a new algorithm on 

generalized iterative deconvolution for receiver function 

estimation [23]. The new algorithm introduced in that study is 

described as a generalization of the iterative deconvolution 

method commonly used as a component of passive array 

wavefield imaging. Moreover, the authors of that new algorithm 

claim that their new approach can improve resolution by using 

an inverse operator tuned to maximize resolution and also that 

the signal-to-noise ratio of the result can be improved by 
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applying a different convergence criterion than the standard 

method, which measures the energy left after each iteration.  

Under ideal conditions, receiver functions can also be 

determined in the frequency domain using the ratio of radial 

component and vertical component seismograms:  

 

                                                                       (1) 

 

where RF(ω) is frequency-domain receiver function; R(ω) and 

V(ω) are frequency-domain radial and vertical component 

seismograms, respectively [22]. The time-domain receiver 

function is obtained by applying inverse Fourier Transform to 

RF(ω): 

 

rf(t) = RF−1(ω)                                                                          (2) 

 

The supplemental material associated with this paper discusses 

some of the details of the practical aspects of computing receiver 

functions. 

 

H-κ Stacking  
 

Receiver functions display a number of phases whose arrival 

times are related with discontinuities in the crust and upper 

mantle. The phases that are important in crustal studies are 

depicted in Figure 1a. These phases include the reference direct 

P wave, P-to-S converted phase (Ps), PpPs phase, and PpSs + 

PsPs phase. These phases originate from an impinging plane P-

wave at the crust–mantle boundary (the Moho). Figure 1b 

displays the receiver function corresponding to the crustal 

structure in Figure 1a. The mathematical relationships between 

crustal thickness and the arrival times t1, t2, and t3 of the different 

seismic phases are given in the associated supplemental material.  

)V(
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Figure 1: (a) A three-component seismic station, a simplified one-layer crustal 

earth model of thickness H, and different seismic phases; (b) receiver function 

corresponding to the given crust and impinging P-wave (modified from an 

original in C. J. Ammon [24]). 

 

H-κ stacking of receiver functions is a technique used to estimate 

crustal thickness H and crustal Vp-to-Vs ratio κ [3]. Using the 

relative arrival times t1, t2, and t3 as well as H and κ, we can 

rewrite the objective function proposed by reference [3] as a 

maximization problem as follows: 

Maximize  

 

           (3) 

 

subject to 

( ) ( ) ( ))(H,trw)(H,tr w+)(H,trw=)S(H, 3j3

N

1=j
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                                                                     (4) 

 

where w1, w2, w3 are weights. The rj(ti), i = 1, 2, 3, are the 

receiver function amplitude values at the predicted arrival times 

of the Ps, PpPs, and PsPs + PpSs phases, respectively, for the jth 

receiver function, and N is the total number of receiver functions 

used for the seismic station in the study. By performing a grid 

search through H and κ parameter space, the H and κ values 

corresponding to the maximum value of the objective function 

can be determined. The main hypothesis behind H-κ stacking is 

that the weighted sum stack will attain its maximum value when 

H and κ acquire their correct values [3]. 

 

Generalized Pattern Search (GPS) Techniques  
Pattern Search Methods for Linearly Constrained 

Minimization Problems  

 

References [16,17] proposed to extend pattern search methods 

for linearly constrained minimization problems. As a result, a 

general class of feasible point pattern search algorithms was 

developed and global convergence to a Karush–Kuhn–Tucker 

point has been proven to hold for such an approach [15]. For the 

case of minimization with general constraints and simple 

bounds, similar pattern search methods employ augmented 

Lagrangian ([13,25]). The pattern search methods for linearly 

constrained cases, just like in the case of unconstrained 

problems, achieve the searching objective without explicit resort 

to gradient or directional derivative.  

 

In this paper, a pattern search algorithm is implemented for the 

following kind of optimization problem with linear constraints: 

Minimize 

 

f(x)                                                                                              (5) 

 

subject to 

 

ℓ ≤ Ax ≤ u,                                                                                 (6) 

 

  

1 w  w w 321 =++
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where f(x) is an objective function; ℓ and u are lower and upper 

bounds with ℓ ≤ u. 

 

The Generalized Pattern Search (GPS) Algorithm: 

 

Here we employed the pattern search algorithm as proposed in 

reference [15]. A pattern is a matrix Pk which can be partitioned 

into components as follows: 

 

Pi = [i Li] 

 

where i has some geometrical properties. Pattern search 

methods advance by managing a series of exploratory moves 

about the current iterate xk to choose a new iterate xi+1 = xi + si, 

for some feasible step si. Let the feasible region for the problem 

be Ω. The following is an algorithm for the exploratory moves: 

 
Algorithm 1: Exploratory moves for linearly constrained pattern search. 

 
1. si ∈ ∆iPi = ∆i[Γi Li].  

2. (xi + si) ∈ Ω.  

3. If min {f(xi + y) | y ∈ ∆iΓi and(xi + y) ∈ Ω} < f(xi), then f(xi + si) < f(xi). 
 

The generalized pattern search (GPS) algorithm for minimization 

with linear constraints is displayed in Algorithms 1, 2 and 3. In 

order to define a particular pattern search method, we must 

specify the pattern Pi, the linearly constrained exploratory moves 

for generating a feasible step si, and the specific algorithms for 

updating Pi and Δi. We also define a trial step sk to be a vector of 

the form sk = Δkck, where ck represents a column of the pattern 

matrix Pi and Δi denotes a step length parameter with  

Δi > 0. 
 

Algorithm 2:  The generalized pattern search (GPS) method for linearly 

constrained problems. 

 

Suppose x0 ∈ Ω and Δ0 > 0 be given. For i = 0, 1, …, 

(a) Compute the objective function f(xi). 

(b) Determine a step si using a linearly constrained exploratory moves 

algorithm. 

(c) If f(xi + si) < f(xi), then xi+1 = xi + si. Otherwise, xi+1 = xi. 

(d) Update Pi and Δi. 
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The rules of updating Δi are specified in Algorithm 3 below. The 

goal of updating Δi is to make sure that the objective function 

f(x) decreases as the process continues. An iteration is successful 

if f(xi + si) < f(xi); otherwise, the iteration is considered 

unsuccessful. For any pattern search method to be acceptable, a 

step needs only to produce a simple decrease, and not a sufficient 

decrease. 

 
Algorithm 3: Updating Δi. 

 

Let τ ∈ Q, τ > 1, and {w0, w1, …, wL} ⊂ Z, w0 < 0, and wj ≥ 0, j = 1, …, L, 

where Q is the set of real numbers and Z represents a set of integers. Let θ = 

τw0, and λi ∈ Λ = {τw1, …, τwL}. 

(a) If f(xi + si) ≥ f(xi), then Δi+1 = θΔi. 

(b) If f(xi + si) < f(xi), then Δi+1 = λiΔi. 

 

The conditions on θ and Λ ensure that 0 < θ < 1 and λi ≥ 1 for all 

λi ∈ Λ. Thus, if an iteration is successful, it may be possible to 

increase the step length parameter Δi, but Δi is not allowed to 

decrease. The algorithm for updating Δi depends on the pattern 

search method. 

 

Generalized Pattern Search (GPS) Technique for H-κ 

Inversion  

 

The GPS technique a direct search method that has significant 

resemblance to the steepest descent method, but unlike the 

steepest descent scheme, GPS does not require the computation 

of derivatives or directional vectors on the objective function. H-

κ stacking optimization equation has five parameters to be 

determined if we would like to solve the problem completely. In 

this case, we apply the generalized pattern search (GPS) 

technique to solve the H-κ stacking optimization problem 

entirely. 

 

For objective functions which are not differentiable or not 

continuous, GPS is an appropriate approach for optimization. It 

can be used to directly optimize all the five parameters in the 

problem. The GPS technique is used for solving optimization 

problems with no information about the gradient of the objective 

function. Unlike the more traditional optimization methods that 

use information about the gradient or higher derivatives to search 
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for an optimal point, a direct search algorithm searches for a set 

of points surrounding a given point, then it looks for one where 

the value of the objective function is lower than the value at the 

current iterate point (note that we are considering a minimization 

problem). In general, direct search techniques are applied to 

solve problems for which the objective function is neither 

differentiable nor continuous. 

 

The Minimization Problem for GPS Implementation: 

 

H-κ stacking was developed based on exploiting the fact that the 

amplitudes of the seismic phases in receiver functions attain their 

maximum values when the correct H and κ values are chosen. H-

κ stacking also takes advantage of the signal to noise ratio (SNR) 

improvement with employing more receiver functions. Thus, it 

maximizes the stack of receiver functions which identify the 

correct H and κ values as well as the right set of weights that are 

appropriate to the quality of available receiver functions. There 

are two ways to implement the GPS algorithm for our specific 

problem. We have to either modify the GPS algorithm to work 

for a maximization problem, or else change the problem from a 

maximization to a minimization problem. It is easier to convert 

the maximization problem of H-κ stacking into a minimization 

problem. Since the expected values of H-κ stacking are either 

zero or positive, the maximum values of the H-κ stacking are 

always positive. Multiplication of the H-κ stacking values by −1 

will turn the data upside down. Then, the maximum value 

changes to a minimum value and the minimum value to a 

maximum. Thus, this will be equivalent to the minimization 

problem. Therefore, it is possible to find the optimal values for 

H, κ, w1, w2, and w3 using the GPS technique.  

Minimize 

 

             (7) 

 

where rj is the jth receiver function amplitude at the particular 

expected arrival time, N is the number of receiver functions for 

the seismic stations, and t1, t2, and t3 are arrival times related to H 

( ) ( ) ( )
N_

1 j 1 2 j 2 3 j 3

j=1

= w r t (H, ) + w r t (H, ) w r t (H, )S   
 

− − 
 

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and κ using equations (10-12) in the supplemental material; or, 

we can minimize the following: 

Minimize 

 

            (8) 

 

where f1, f2, and f3 are functions relating t1, t2, and t3, 

respectively, to x1 = H and x2 = κ; and x3 = w1, x4 = w2 and x5 = 

w3 are weights which are subject to: 

 

                                                                       (9) 

(Linear Equality Constraint) and using the following bounds:                                                                       

 

                                                                            (10) 

                                                                            (11) 

                                                                            (12) 

 

The H-κ receiver function stacking algorithm using GPS has 

been implemented using MATLAB. The implementation of this 

algorithm is given in the next subsection (Section 3.1). The 

receiver functions and their parameters, such as times and 

amplitudes of the receiver functions, for a given seismic station 

are obtained from the given seismic signal using the iterative 

deconvolution method of Ligorria and Amon [20], as mentioned 

in the previous section (Figure 2), and that helps to determine the 

parameters of the crustal structure. Figure 2 shows 13 receiver 

functions, each of which are obtained by the deconvolution of a 

vertical component seismogram from a radial component 

seismogram from recorded seismic earthquake data. At each 

iteration, the H-κ stacking or objective function values are 

calculated based on the amplitudes of the receiver functions at 

the three times picked by the H-κ stacking algorithm. The 

average crustal P-wave velocity (Vp) for the Main Ethiopian 

Rift, in which station ARBA is situated, is 6.4 km/s ([26,27]) and 

that value is used for the implementation. More information on 

seismic station ARBA and the source of data and many other 

information are found in the supplemental material to this article. 

( ) ( ) ( )
N

_

3 1 1 2 4 2 1 2 5 3 1 2

j=1

=  x f x , x + x f x , x x f x , xS(x)
 

− − 
 


3 4 5 1x x x+ + =

30 1.0x 

40 1.0x 

50 1.0x 
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Researchers making use of the H-κ stacking algorithm have been 

assigning values for the three weights w1, w2, and w3 a little 

differently. As a norm, w1 has been given the greatest weight 

compared to w2 and w3. Some researchers set a value for w1 

greater than w2 + w3. However, generally, most studies in the 

past have made direct or indirect application of the concept of 

linear equality constraint that we have implemented in the 

current study, i.e., w1 + w2 + w3 (= x3 + x4 + x5) = 1 (for example, 

[3,4,28]). 

 

Data and Results  
The GPS Implementation  
 

For the GPS implementation, the maximization optimization 

problem was converted to a minimization optimization problem. 

The pattern search technique was originally developed for a 

minimization problem, and so, we can take advantage of 

previous studies if we convert the problem from a maximization 

to a minimization optimization problem. The steps of this 

conversion have already been discussed in the previous sections. 

 

Since there are five different variables to be determined in the H-

κ receiver function problem, a mesh size of 1 can offer 10 

pattern vectors, each of which equal to a unit-size direction 

(pattern) vector. If we add the pattern vectors to an initial iterate 

point, we obtain 10 new iterate (mesh) points. If we apply partial 

polling of GPS, we calculate objective function values for the 

new iterate (mesh) points until we obtain an objective function 

value lower than the objective function at the current iterate. On 

the other hand, if complete polling is desired, we calculate 

objective function values at all the new mesh points before 

seeking to find the mesh point with the smallest objective 

function value in every iteration. Figure 2 shows receiver 

functions obtained from seismic data collected in seismic station 

ARBA which was located close to the town of Arba Minch 

within the Main Ethiopian Rift. As mentioned in the previous 

section, more information on seismic station ARBA and other 

seismic stations as the source of data and many other relevant 

information are found in the supplemental material to this article.    
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Figure 2: Receiver functions data from seismic station ARBA which are used 

in this article for testing the application of the generalized pattern search (GPS) 

algorithm. The three times t1, t2, and t3 picked by the H-κ stacking algorithm for 

the three seismic converted phases (P-to-S converted phase (Ps), PpPs phase, 

and PpSs + PsPs phase) from the crust–mantle boundary (Moho) are shown 

with short vertical lines on each of the receiver function time series. 

 



Prime Archives in Computational Science 

14                                                                                www.videleaf.com 

The graphical user interface (GUI) implementation of the GPS 

algorithm in Figure 3 displays important results from this study. 

The GUI implementation provides opportunities to display the 

GPS results. It shows the initial values of the weights and crustal 

parameters on the top left-hand panel, while it provides the final 

values of the weights and the crustal parameters at the bottom 

panel. The graph on the GUI displays the variation of the 

objective function of the minimization optimization problem 

versus the number of iterations. The figure particularly shows the 

GPS inversion results for seismic station ARBA. The initial 

values are (20, 1.70, 0.34, 0.33, 0.33) and the final values are 

calculated by the GPS algorithm. The final values of crustal 

parameters and weights are (30.2, 1.77, 0.6, 0.3, 0.1). 

 

 
 
(a) Lower extreme initial H and κ (Vp/Vs) ratio values. 
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(b) Higher extreme initial H and κ(Vp/Vs) ratio values. 

 
Figure 3: Figure displaying two extreme initial values for the region of 

investigation. (a) Smallest and (b) highest initial parameter values. 

 

GPS Convergence Test for the H-κ Inversion  
 

The GPS technique requires considering initial values for the 

variables to be explored. When we consider initial values for the 

different variables, especially the crustal parameters, we will be 

looking at feasible regions. We would be conservative compared 

to what the expected value for the crustal parameters are, 

according to global earth models such as CRUST2.0. CRUST2.0 

gives global crustal thickness estimates for a very large region of 

a 20 × 20 ≈ 222 km × 222 km grid over most parts of the Earth 

[29]. The compilation of CRUST2.0 covers most of Eurasia, 

North America, and Australia and some areas of Africa and 

South America and in the oceans. 

 

From previous crustal studies, the crustal thickness in the Main 

Ethiopian Rift normally varies between about 25 and 35 km 

([7,26,27]) and the κ values in the region vary, typically, 

between about 1.70 and about 1.90 ([7,30]). Thus, here are the 

range of feasible initial values for the GPS application: Hinit = 

20–40, κinit = 1.65–1.95; w1init, w2init, w3init are taken from the 

range indicated in the previous section. GPS convergence has 
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been tested by observing final parameters and also the final 

objective function values. We applied the test using not only two 

extreme initial values but also mixed extreme and some 

intermediate initial values. This has been performed for the 

seismic station ARBA.  

 

Discussion  
 

It was found that the GPS algorithm converged and offers the 

same final values irrespective of the initial values. Table 1 

summarizes the above results, and the final values for all initial 

value combinations are the same.  

 
Table 1: The final values of parameters, weights, and objective function. Fval 

is the final objective function value. 

 

Hopt 30.0988 

κopt 1.7750 

w1opt 0.6000 

w2opt 0.3010 

w3opt 0.1000 

Fval −0.7290 

 

Therefore, the final values are the optimal or near optimal values 

from the GPS technique. Table 2 shows a comparison of optimal 

crustal parameters for the seismic station ARBA using three 

different approaches: the Monte Carlo approach (Dugda et al., 

2005 [8]), the genetic algorithm (GA), and the GPS technique.  

 
Table 2: Comparing crustal parameters for the station ARBA from three 

different approaches. 

 

Different Studies Optimal H 

(km) 

Optimal 

Vp/Vs 

Genetic algorithm (GA) implementation 

(Dugda et al., 2012, this study) 

29.7 1.77 

Monte Carlo (Dugda et al., 2005) 29.8 1.79 

GPS technique 30.1 1.78 

 

Table 3 provides an appraisal of weights obtained for the seismic 

station ARBA using the Monte Carlo technique, GA, and GPS. 

Application of GPS on H-κ stacking of receiver functions 

enables to almost exhaustively search for the weights w1, w2, and 
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w3 as well as H and κ within the given parameter space. We can 

observe that the GPS results are repeatable. GPS provides highly 

repeatable outputs, especially compared to heuristic methods 

which may need more runs to provide similar results. It is 

important to note here that our analysis has taken into 

consideration some potential circumstances that could affect κ 

values. Recently, some researchers have found that κ values for 

many seismic stations decrease before the time of a main shock 

because of crustal area fracture caused by a high stress 

accumulation [31–33]. Fortunately, for the duration of our study, 

there was no major earthquake in the region where our seismic 

stations were situated and so there should be no concern about 

such an effect on our κ values. 

 
Table 3: Comparing optimal weights for seismic station ARBA from three 

different approaches. 

 

Different Studies Optimal 

w1 

Optimal 

w2 

Optimal 

w3 

Genetic algorithm implementation 

(Dugda et al., 2012, BSSA) 

0.5 0.4 0.1 

Monte Carlo (Dugda et al., 2005) 0.5 0.4 0.1 

GPS technique 0.6 0.3 0.1 

 

The repeatable results are important because the repeatability 

characteristics would help us check the dependence of the 

inversion on initial model parameters. If the results are 

independent of the initial values, we should obtain almost 

identical results for any initial model. GPS delivers repeatable 

results, even if it starts at different initial conditions. Thus, the 

repeatable behavior can be harnessed to use GPS to test initial 

value dependence of final parameters. 

 

Conclusions  
 

In this study, we developed a technique to solve the problem of 

inverting receiver functions to find optimal crustal parameters 

and optimal weights using a generalized pattern search (GPS) by 

setting up the problem as an optimization problem. A previous 

study utilized the Monte Carlo technique for solving for the 

weights required to determine crustal parameters using the H-κ 

stacking of receiver functions ([7]). One major objective of our 
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work has been to develop a system that is suitable for automation 

besides providing optimal solutions. Our algorithms have been 

tested using seismic data from more than twenty-five seismic 

stations and we showed that our results are consistent with 

previous studies.  
 

Application of GPS on H-κ stacking of receiver functions 

enables to explore for optimal values just as it is possible to 

conduct an exhaustive search for the weights w1, w2, w3 as well 

as H and κ. The GPS method performs the search very quickly 

because its exploration amounts to finding the steepest descent 

path without computing the derivative of the objective function. 

Since it is not computing the derivatives, this makes the GPS 

faster in its convergence. Moreover, the GPS technique is 

suitable for objective functions in which finding the derivative is 

not easy and/or when the objective functions are not continuous. 

The objective function in this research satisfies both of these last 

conditions. Finding the derivative for our objective function is 

not easy and the objective function is not continuous either. 

Whenever the GPS is successful in its search in the current 

iteration, its step length increases (in our implementation, the 

step size Δ doubles) on the next iteration. This is an important 

factor contributing to the faster convergence of the GPS 

technique.  
 

Some of the advantages of the GPS technique observed in this 

research include that outputs and results can be repeated 

seamlessly, the number of iterations and the number of functions 

evaluated are the same as long as the machine and initial 

conditions remain the same, and optimal values do not depend 

on the initial values. The tool developed utilizing GPS optimizes 

the given problem and has the following features: it is suitable 

for automatic processing of seismic data from all stations at the 

same time; it uses a user-friendly approach based on MATLAB; 

the approach may not need much knowledge of seismology; and 

it takes into account the quality of receiver functions through 

variable weights. 
 

This study confirms that the GPS technique implemented on H-κ 

stacked receiver function optimization can provide optimal 

weights as well as optimal crustal parameters H and κ. The 

optimal crustal parameters and weights produced by the GPS are 
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consistent with the GA results. Results for the station ARBA and 

others could make it clear that the weights and parameters found 

by GPS closely match those obtained previously using a 

different method and also the results from GA implementation. 
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