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Abstract: We define a testing function space D;» (R") consisting of a class of C* functions defined on R",
n > 1 whose every derivtive is L?(R") integrable and equip it with a topology generated by a separating
collection of seminorms {7y } 3" _, on D2 (R"), where [k| = 0,1,2,...and y4(¢) = |¢®)|2, ¢ € Dpa (RM).
We then extend the continuous wavelet transform to distributions in 'D‘}_z (R"), n = 1 and derive the
corresponding wavelet inversion formula interpreting convergence in the weak distributional sense.
The kernel of our wavelet transform is defined by an element ¢(x) of D2(R") N Dp(R"), n > 1
which, when integrated along each of the real axes Xq, X5, ... X,, vanishes, but none of its moments
Jp» X™p(x)dx is zero; here x™ = x|"' x52 -- - x,", dx = dx dx; - --dx, and m = (my, my,...m,) and
each of my, m,,. .. my, is > 1. The set of such wavelets will be denoted by Dy (R").

Keywords: wavelet transform; continuous wavelet transform; window functions; integral transform
of generalized functions; Schwartz distributions

MSC: Primary: 42C40; 46F12; Secondary: 46F05; 46F10

1. Introduction

(a) Wavelet analysis has now entered into almost every walk of human life [1-5].
There are applications of wavelets in areas such as audio compression, communication,
de-noising, differential equations, ECG compression, FBI fingerprinting, image compres-
sion, radar, speech and video compression, approximation, and so on. Discrete wavelet
transform has many applications in Engineering and Mathematical sciences. Most notably,
it is used for signal coding. Continuous wavelet transform is used in image processing,. It
is an excellent tool for mapping the changing properties of non-stationary signals.

Another recent example of an interesting application of wavelets was the LIGO
experiment that detected gravitational waves using wavelets for signal analysis. See the
paper submitted on 11 February 2016 to “General Relativity and Quantum Cosmology” [6].

These types of works on wavelets sparked the research on continuous wavelet trans-
form of functions and generalized functions. The generalized function space that we chose
for this work is the space D’LZ(R”) [7,8].

My earlier work in this connection was on the generalized function space D'(R"),
n > 1. The disadvantage in this space was that two functions having the same wavelet
transform may differ by a constant even though all the moments of the wavelets are non-
zero. The space D}, (R"), n > 1 does not contain a non-zero constant so that kind of
difficulty is not encountered with this space. Besides, the space D}, (R") is different from
the generalized function space D'(R"), n > 1.

(b) The wavelet that we will be dealing with is a variation of one dimensional wavelet
xe~*". All the even order moments of this wavelet are zero and so two functions having the
same wavelet transform may differ by a polynomial. The kernel of the wavelet transform
is generated by this wavelet with the formula ﬁw(ﬂi;b], a,b real and a # 0 where

P(x) = xe~* . In order to remove the above mentioned problem we construct a wavelet
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(1+x —2x%)e " such that all the moments S (14 x — 23 Ydx £ 0,m > 1
and [ (14 x — 2x2)e~¥'dx = 0. Many other wavelets satisfying this condition can be
generated and some examples will be given in the coming section. An interesting point
is that this wavelet is the union of a symmetric and an anti-symmetric wavelet as follows
(1+x—2x%)e ™ = xe* + (1 —2x%)e . The wavelet xe ¥ is antisymmetric and the
wavelet (1 — 2x2)€_x2 is symmetric and therefore this paper is very well suited to the
journal “Symmetry”.

(c) In the foregoing definition of the wavelet transform the kernel of the wavelet

transform is ; i
x —
ml’b( a )

¥ We generalize the kernel ¢ to dimensions n > 1 as (x) =

where (x) = xe~
x1%2 ... xye” "I and the corresponding kernel of the wavelet transform ﬁlﬁ'( 2-b)_ Clearly

P(x) € D2 (R") NDy1 (R"). Therefore, two functions having the same wvelet transform
may differ by a polynomial. We now illustrate this fact as follows. Let

h = f
(L)

a

These two distributions have the same wavelet transform but they may differ by a
polynomial involving a constant term. See the calculation below:

(5" (50 = L (5055

Put

x = = / la|lx"p(x)dx, |a| = |ayaz...an
e }ff

= 0,

when at least one of components m1y, m; .. . my is even and is # 0 when each of mq, my, ... my,
is odd.

So f1 and f, will differ by the polynomial (%) " Therefore, in order that the unique-
ness theorems may hold for the inversion formula for this wavelet transform, we have to
select the kernel of our wavelet transform such that none of its moments of order m is zero,
m= (mq,ma,...my), m >1¥Vi=1,2,...n

The dual of D(R") contains a non-zero constant. The wavelet kernel that we are
choosing belongs to Dy (R") N D2 (R"); as for example xjx;...x,¢(x) belongs to this
space.

The kernel ¢(x) of our wavelet transform should be such that [ ¢(x)dx; =0,i =
1,2,...nbut none of its moments of order m = (mq,my, ... m,) where each of m, my, ... m,
is > 1, is zero. If we take (x) = x1x2... xu(x) € D(R") then [*,_ ¢(x)dx; = Obutall its
moments of order m, ie.fﬁ,r x"p(x)dx will not be non-zero. We therefore seek our kernel
P(x) € D;2(R") such that

[~ ptax =0, i=1,23,..n

and

/?g" xM(x)dx #£0, m= (my,my,...my).
In Section 3 we will show how such functions are selected or constructed.
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2. Background Results

It is assumed that the readers are familiar with the elementary theory of distributions.
Details of the theory may be found in [9-17].
A function f € L?(R") is called a window function [18-20]if x;f (x), xixf (x), xpxjxp f(x)
i#] i#j#k#i
..x1x2...%,f(x) belong to L?(R"), i,j,k...all assume values 1,2,3,... n. It is known that
such a window function also belongs to L!(R"). A function f € L?(R") is said to be a basic
wavelet if it satisfies the admissibility condition

| / ” \f f A|)| dA  isbounded, (1)

where f(A) is the Fourier transform of f(x) defined by

- " -I\r
f(A) =  lim : T
Ny, Ny Ny—oo ( er 2m)n/2 | N, . N, =

- W.f.m“-./_m./_mw““*d

A= (AL Ay Ay, t=(h,ta.. . ty), dt =dhdt, ... dt, and the limit is interpreted in the
L2(R") sense ([21], p. 75).
In L2(R"), let us take f(x) = x1x2- - - xpe~ (AT 13) then

F(A) = I’Llf‘Lz?; -/-2,1,,1'” o~ (At A totAn) /4.
2 n

Therefore

If(A)[? 1
[ AT A= g <o

So f(x) is a basic wavelet in R".
We now describe some results proved in [20] which will be used in the sequel. These
results are being stated for the convenience of our readers.

Theorem 1. Let f € L?(R") be a window function on R". Then f € L' (R") ([19], Theorem 3.1).

Theorem 2. Let f : R" — Cbea LZ(R”) window function. Let f(Aq, A2, ..., An) be the Fourier
transform of f defined by

FM, Az An)

1 .
— W / (f(x-l’xz___x”)e_{(_xl)ll—l_xz)lz—l'"'+xﬂ/]lf?}dx1dxz___dx”
T JE U

Then the following statements are equivalent
(”) f(AlfAzi"':AH)HAjzo :0

/ f(xhxz,...,xj,. ) .,x,,)dx},- =0,j=1,2,3...n([19], Theorem 3.2).
Theorem 3. Let f € L?(R") be a window function. Assume also that

/ FX1 X2 Xy x)dx; =0 Vi=1,2,...,n
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Then, f satisfies the admissibility condition

|f(/11;fl2"'/1u)|2
/. g AhdNs - dAy < o

([19], Theorem 3.3).

More precisely we have

|f'(ﬁ1,1’12,---n&a1)|2
L. Padg, o Aa] A2 B

n

n
IFIE+2" Y lxafl3+2% ) [lxxfll2
i=1

i,j=1,i%]f

<

n
+ 23 | e+ 2 f B
(,JI', =

Theorem 4. Let f € L2(IR") be a window function. Then f satisfies the admissibility condition if
and only @fffomf(xhxz,...,x,,)dx!- =0,i=123,...,n

This is a corollary to the previous results.

Theorem 5. Let ¢ € D;2(R") ND 1 (R"); then ¢ satisfies the admissibility condition if and
only if
/ q",(xlleI“‘lxl.j'“‘lx”)dx{.:0Vi:llzi“‘ln‘

Now let us define a function (x) as follows

_Ixl2
%D(x):JClx?.---l’ut? |x|’ |x|:\/x:1)-+x%_|_+x%

Clearly y € L1(R").
Then (x) is a window function belonging to L2(R") and satisfying

/ P(x)dx; =0 Vi=1,2,...n.

Therefore in view of the foregoing results ¥(x) is a wavelet.

Therefore, we define the wavelet transform of f € D7, (R") by

We(a,b) = <f(t), ! ¢(t_b)>, a; £0,i=1,2,...

|al a

= 0, when q; =0, forany i =1,2,...n.

Here
1= (ﬂ],ﬂzl...ﬂ”), b = (b], bz,...b”).

V6l =+/laraz ... a4y
t_b o t‘l _b‘l tz_bz t”_b”
o) -a(i50 50 2,

(c) In the foregoing definition of the wavelet transform the kernel of the wavelet transform is

x_—b),

—=(
Ja¥\
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where (x) = xe ¥

X1X2 ... x”f?‘|I|2 and the corresponding kernel of the wavelet transform as

We generalize the kernel ¢ to dimensions n > 1 as P(x) =

1 —b
Clearly ¢(x) € L*(R") N L'(R"). Therefore, two functions having the same wavelet
transform may differ by a polynomial. We now illustrate this fact as follows. Let

h=Ff
s (5]

a

These two distributions have the same wavelet transform but they differ by a polyno-
mial involving a constant term. See the calculation below:

(50" (50 = L (50 (5

Put

x = = / la|x"y(x)dx, |a| = |a1az...an
: 3”
= 0,

when at least one of components 1y, mo, .. . my is even and is # 0 when each of mq, mo, ... my
is odd. .
So f; and f, will differ by the polynomial (%) . Therefore, in order that the

uniqueness theorems may hold for the inversion formula for this wavelet transform, we
have to select the kernel of our wavelet transform such that none of its moments of order
m is zero, m = (mq,my,...my ), m; > 1Y i=1,2,...n.

The dual of D;> (R") does not contain a non-zero constant. The wavelet kernel that
we are choosing belongs to D}z (R") N Dy, (R"); as for example x1x; - - - x, e ¥l belongs

n
to this space, but H ( af ) does not belong to the space D,z (R") N D1 (R").

i=1 "4/ 1+ x?

The kernel i(x) of our wavelet transform should be such that [ y(x)dx; =0,i =
1,2,...nbut none of its moments of order m = (m1,my, ... m,) where each of mq, my, ... my
is > 1, is zero. If we take (x) = xy x2... x”e"x|2 then ffom (x)dx; = Obut all its moments
of order m, i.e., [, x"(x)dx will not be non-zero. We therefore seek our kernel ¢(x) €
D;»(R") "Dy (R") such that

/ l,b(x)dxizol 1':1’2’3’___11_

and
/ xMp(x)dx #0, m = (my,my,...my)
N 1”

andm; >1, i=1,2,...n
In Section 3 we will show how such a wavelet kernel is constructed.

3. Construction of Functions in the Space D;.(R") Which Is a Wavelet Such That
/ ¢(x)x"dx # 0, m = (mq,mp, -+ -my,);eachm; >1,i=1,2,...n
. RM

Le., Construction of functions ¢(x) € Dps(R"), n > 1.
In dimension n = 1 one such function is given as:

P(x) = (1+x —kx)e ™.
The constant k is so selected that
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Therefore,

A somewhat trivial construction of such a function ¢(x) in n dimension can be a
function (x) given by

1

P(x) = H(l +x; — fo)e_"%.

i=1
One can see that -
/ P(x)dy; =0 Vi=12,...n

of —OQ

and

[ ) P(x)x"dx #0.

for my, my,...my > 1, m = (my,my, - - - my).
We now give a non-trivial construction of such a wavelet as follows:
n=2
P(x) = e~ (%) [1 +x1 +x2 + x1x2 — kg(x% —|—x%)}.

We select the same constant k( as before, i.e., kg = 2. Clearly, integration along X; and X;
respectively gives

/ p(x)dx; =0, i=1,2

Verification of the fact that

/ [ P(x)x)" xy 2dxydoy; my > 1, mp > 1

is non-zero is easy and is done as follows:

(i) mq, mp both even,

/ / m‘xm2 dxydxa

= [ [ e lxl X e kg(xl—i-xz)xf“xg{z}dx;é{).

(ii) mq, m2 both odd:

(] o0

/ / P(x xm‘xzizdxldxz
[m / ml+1 mz-f—ldxldxz > 0.

— o0 oo

(iii) m17 even and m1, is odd
[ P(x) " xy2dx1dxy = [ [ () Xy gy dxy > 0.
when m; odd and m; even
.Kzz P(x) x]" x5 2dxydxy = .ﬂz e~ (¥+3) xi”zxg{‘ﬂdmdxz > 0.
n = 3. We then define ¢(x) as
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P(x) = g~ (133433 {1 + X1+ x2 + x3 4 x1x2 + X2%3 4 x3x1 + X1%0%3 — ko (3 + x5 + x%)] .
The integral of y(x) with respect to x1, x5, x3 along the axes X;, X5, X3 respectively is zero.
./R3 P(x)x"dx #0 foreach my, my, mz > 1.

This fact can be verified similarly as in the case n = 2. Proceeding this way, a non-
trivial construction of the function ¢(x) can be done in any dimension n > 1.

4, Main Theorem

We hereby quote a theorem proved in ([11], p. 51, [17], p. 137) which plays a crucial
role in the proof of our main theorem.

Theorem 6. Let f € D'(R"). We can find a sequence { fi.(x) }3°_, of functions in D(IR" ) such that
lim (£, (x),9(x)) = (f.9), ¥ € D(R").

This fact is expressed by saying that D(R") is dense in D' (R"). If is well known that by identifying
¢(x) € D as a reqular distribution, D(R") C D'(R"), ([11], p. 51,[17], p. 137).

Corollary 1 (Corollary to Theorem 6). Let f € D}, (IR"). We can find a sequence { fi(x) };>
of functions in D(IR") such that

lim (fi(x), ¢(x) = ( (), $(x)) ¥ ¢ € D(R").

This fact is expressed by saying that D(R") is dense in D'(R") and so in D},(R") as D, (R") C
D' (R") with identification similar to given in Theorem 6.

Lemma 1. Let i be a wavelet belonging to the space D2(R") N D (R"), n > 1 and f €
D}, (R") then the wavelet transform F(a, b) of the distribution f with respect to wavelet function

1;1(367_5') is defined by
1 x—b
Fla,b) = <f(xJ, (5 )>

x,a,beR", a#0.ie,each|a;| >0,i=1,2,---n.
We wish to prove that F(a, b) is a continuous functionof a,b ; a,b € R".
Proof. We can write F(a, b) = —— <f(x), Pt )> so it is enough to prove the continuity

\/m a
of (f(x), p(:2)) = G(a,b) (say)

G(a+Aa, b+ Ab) — G(a, b) = <f(x), go(ﬂisz)) —go(x;b)).

x_ﬁ{-jij;ﬁb}) — (L) — 0 in the topology of D},(R") as

Aa, Ab — 0 independently of each other. Now

() (5] o

- [ (5523 ()

So we need only show that gb(

Therefore
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x—{(b+Ab)
a+Aa

Note that xT‘b is (x‘a_lb‘ i xza_zh, e X "a_"b") and a similar explanation for

x (x1,%2,...%n)
a = (ayaz,...by)
= (bhbz;---bn)
— (klszf---kn)-

In view of the mean value theorem of differential calculus of n-variables there exists a
number 0 < 6 < 1 such that ([22], p. 483)

n

1P(_kﬂ} (x — (b+0Ab) ) x; — (b; + 6Ab;)
N ( ﬂﬂ{'

“ | (a+6Ma)k a-+ 6Aa a; + 6Aa;)?

TER (RN IY) K, .
a+ 6Aa (a+6Aa)k (a; + 0Aa;) "

gl (x—(b+9é.b)) Ab;
(a+ 0Aa)k a+0Aa (a; + 0Aa;) |

— 0in Dy, (R") as Aa and Ab — 0 independently of each other. Convergence is with
respect to x in the topology of D, (R"). O

The dual space D}, (R") of D;»(R") does not contain a non-zero constant, therefore
we will not use the notation D;_Z (R™); this notation will also mean the space D}, (R").
F

Our main theorem is stated and proved as follows.

Theorem 7. Let f € D}, (R") and y be a wavelet belonging to the space D2 (R") Dy (R")
then the wavelet transform of f € D}, (R") with respect to the wavelet kernel Y € Dp2(R") N

D1 (R") is defined as
1 t—0b
W(a,b) = <f(r), —v(% )>

Wf‘(ﬂll ﬂ?_; L ‘fﬂ”j' bll bZ; ey b”)

1 ti —by tp—Dby ty — bn)
= t1,ta, ..., 1), ’ TRy
<f( 1.t n) |ﬂ132"'ﬂn|w( o P Py

a; and b; are veal and a; =0 Y i = 1,2,...,n. It is asumed that fi:gb(x)dx{- =0 VYVi=
1,2,...nand f},, x"p(x)dx # 0, form = (my,ma, ... ,my)and m; > 1,i=1,2,...n.

Then
(4 72) 12 (o), O b () e g ) o

— (f(x),¢(x)) as A,B— o0 and 5 — 0+

or

Here, when we say B — oo, it means that all the components By, By, ... B;; of B — o0
independently of each other and similar notation for A — oo and # — 0+ means that all
the components 1, 172, . . . ijp of § — 0 independently of each other.

In (2) db = dbydb, ...db, and the integration is being performed with respect to
variables by, by, . .. b, with the corresponding limit terms being f_B" et _B’-Bz i‘sl and da =
daiday .. .day and the integration is being performed with respect to variables a1, a2, . .. ay,

with the corresponding limit terms being
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() L /"“)

Proof. Since D(IR") is dense in D}, (R") we can find a sequence { f, (t) },,_; in D(R") such that

Lim (fi(t), ¢(1)) = (f(£).9(t)) V¢ € Dpa(RY)

<([ [_u)c#,[ <fk() ( b)>¢(¥)j§—$,¢(x)> 3)

Cyp = (2m)" / lBD|(A|)| dA < co  (admissibility condition)

(A, A2, ... Ay) = B(A), the Fourier transform of a window function y(x) € L2(R").

(g ([ L) [ () (5) o @

[using Fubini’s Theorem]

Now

Here also dx = dxjdx; ...dx, and integration is being performed with respect to vari-
Cf?
ables x1,x3,...x; with the corresponding limit terms being / / /

C = ((,Cy,...Cy) and C — oo means all the components C;,C,...C, of C —> o0 m
dependently of each other. Now letting 7 — 0+, A, B, C — oo we see that

(001 1% % L2505
= (fk(t), ¢(t))

Q)

([18], Theorem 4.2). Each of the integral sign [ means [ e / [ and similar
(n times)

meaning to the integral sign [ from now on. Therefore, from (3) and (5) we get

im (L)) Lroe (G e () E ) o

n — 04

= (fe(x),9(x)).
The integral in (6) converges to fi(x)in L2(R™), ([19], Theorem 4.2).

So
(P& [ Jo (At w(15E) Yy (552) 2, o))
= (felx), $(2))-

The integral in (7) converges to fi(x) in L?(R"). Now letting k — co we get

<(P)Clwff°mff°m<f(f)f v}m%”(%»‘”( )affjr? 9= )> 8)
= (f(x), ¢(x))-

(7)

([19], Theorem 4.2).
The L.H.S. expressions in (2) and (8) are meaningful in view of Lemma 1. [
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5. Conclusions

In order to deal with the wavelet transform of elements of D’ we have to find wavelet
function ¢ (x) in D satisfying the condition [ (x)dx = 0. It turned out that with ¢(x) =

1
{ g £ le ;} we construct a function ¢(x) = x¢(x), [18]. Then [ (x)dx =0
X =

and so it is a wavelet in view of results given in Section 2. The corresponding wavelet
transform kernel will be ﬁg{! (xT_b) a, breal and a # 0. All even order moments of {(x)
a

is zero so two functions having the same wavelet transform will differ by a polynomial
plus a constant; therefore we construct wavelet ¢(x) in D such that none of its moments
of order > 1 is zero. It turned out that one such wavelet is (1 + x — 2x2)¢(x) and the
result is generalized in n dimension n > 1, many other functions were constructed. The
disadvantage with this wavelet was that two functions having the same wavelet transform
could differ by a constant. Bearing with the fault in our technique we generalized this
result to dimension n > 1 and corrected this fault by deleting all non-zero constants from
the space D'(R"), n > 1 [18].

If we look into the generalized function space Dj, (R") we find that this space does
not contain a non-zero constant. For this reason, this space is quite interesting and using
technique similar to that used for the space D'(R"), n > 1 we construct wavelet function
¢ € D;2(IR") whose all moments of order m = (111, m2,.. . my) each of my, my, .. .y is > 1
are non-zero. We then proved the wavelet inversion formula for the space D;_z (R"),n>1
using these results derived. Uniqueness theorem for the inversion formula then follows.

There are many applications of wavelets and continuous wavelet transforms which
are mentioned in the beginning part of the introduction.
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