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Abstract  
 

Thermoforming is a process where the laminated sheet is pre-

heated to the desired forming temperature before being pressed 

and cooled between the molds to give the final formed part. 

Defects such as wrinkles, matrix-smear or ply-splitting could 

occur if the process is not optimized. Traditionally, for 

thermoforming of fiber-reinforced composites, engineers would 

either have to perform numerous physical trial and error 

experiments or to run a large number of high-fidelity simulations 

in order to determine satisfactory combinations of process 

parameters that would yield a defect-free part. Such methods are 

expensive in terms of equipment and raw material usage, mold 

fabrication cost and man-hours. In the last decade, there has 

been an ongoing trend of applying machine learning methods to 

engineering problems, but none for woven composite 

thermoforming. In this paper, two applications of artificial 

neural networks (ANN) are presented. The first is the use of 

ANN to analyze full-field contour results from simulation so as 

to predict the process parameters resulting in the quality of the 

formed product. Results show that the developed ANN can 
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predict some input parameters reasonably well from just 

inspecting the images of the thermoformed laminate. The second 

application is to optimize the process parameters that would 

result in a quality part through the objectives of minimizing the 

maximum slip-path length and maximizing the regions of the 

laminate with a predesignated shear angle range. Our results 

show that the ANN can provide reasonable optimization of the 

process parameters to yield improved product quality. Overall, 

the results from the ANNs are encouraging when compared 

against experimental data. The image analysis method proposed 

here for machine learning is novel for composite manufacturing 

as it can potentially be combined with machine vision in the 

actual manufacturing operation to provide active feedback to 

ensure quality products. 
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Introduction  
 

In the last decade, machine learning has been utilized across 

different industries. In engineering and manufacturing, a 

properly trained artificial neural network (ANN) can help to 

develop design guidelines or provide optimized solutions that 

would substantially reduce the design cycle time. In the first 

application, the slip-path length contour images from hundreds 

of finite element thermoforming analyses are used as inputs and 

the ANNs are trained to predict the original process parameters 

based on new images from unseen cases. Knowing 

approximately the actual process parameters that formed the part 

can provide a causal link insight to help develop design rules 

and allow an experienced engineer to propose improvements on 

the manufacturing processes so as to mitigate part defects. In the 

second application, another ANN is used for process parameter 

optimization in order to minimize the maximum slip-path length 

(indicator for surface defect) and to maximize the shear angle 

coverage (indicator for formability) for ply angles between 40 to 
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50 degrees of the formed laminate part. The second criterion is 

in tandem with promoting the draping of the laminate by ply 

shear mechanism rather than out-of-plane bending which will 

cause wrinkling. 

 

Background  
 

In this work, the finite element analysis software AniFormTM [1] 

is used to simulate thermoforming of woven carbon fiber 

thermoplastic laminate under various process conditions. Each 

simulation can take between 1 to 2 h which is a time-consuming 

process. The motivation is to apply artificial neural network 

(ANN) to expeditiously predict better process parameters so as 

to reduce design cycle time. This process can help engineers 

explore the design space much faster, help develop correlations 

and design guidelines for thermoforming and in deriving an 

optimal set of process parameters that would create a better-

quality part. 

 

Artificial Neural Network and Convolutional Neural 

Network  
 

Neural network in computer science is an attempt to approximate 

the biological neural network of human brains. Its application in the 

field of machine learning is vast and can include natural language 

processing, object recognition, data analytics and many others. 

 

An ANN is a system of many computing devices called neurons. 

Usually, an ANN consists of multiple neuron layers: an input 

layer followed by hidden layers and a final output layer. In a 

feed-forward NN (FFNN), the neurons in a layer only receive 

information from neurons in previous layers and send 

information to neurons in subsequent layers. Typically, only the 

neurons in two consecutive layers are connected. This 

connection is weighed and comes with a weight value. Despite 

the great variety of layer types, most neurons would perform the 

multiply and accumulate (MAC) operation on the data received 

from other neurons and then apply a non-linear function on the 

result. In this paper, two types of FFNN are developed. The first 

is the fully connected neural network (FCNN), whereby each 
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neuron in layer i is connected to all neurons in layer i + 1, and 

the defining parameters for each FC layer are the number of 

output neurons. The second is the convolutional neural network 

(CNN) that is commonly used in the field of image 

classification, whereby ANNs with many convolutional blocks 

(Conv) extract features, followed by FC layers that would 

perform prediction using the extracted feature vector. 

 

In a Conv layer, a sliding filter is applied to perform MAC 

operations on a region of the input and stores the result in the 

output tensor, called a feature map. The filter will take a stride, 

which can be multi-dimensional, to the next region after each 

MAC operation. Finally, an activation function is applied at each 

position of the feature map to compute the output of the Conv 

layer. As sliding filters can stride over multiple dimensions, they 

can be used to extract inter-dimensional and/or spatial 

information from the input. The defining parameters of a Conv 

layer include the filter size and the stride. 

 

Figure 1 shows an example of how a sliding filter works. The 

input source is a 2D array while the filter is a 3 × 3 array. Each 

element in the filter represents a weight. When the filter is 

applied on a region of the input source (overlapping region), its 

product with the corresponding element in the filter is 

accumulated. Essentially, the filter is a weight matrix used to 

carry out MAC operations on a region of the input tensor. 

 

 
 

Figure 1: Example of convolution operation. 
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ANN Applications in Manufacturing Research  
 

To the best of the authors’ knowledge, almost all applications of 

ML in manufacturing thus far belong to the category of 

supervised learning whereby the training dataset is fully 

labelled. How the data are generated is very specific to the 

problem investigated, and for each engineering field, there are 

different considerations for data. As early as 2003, applications 

of ML in manufacturing were present. In [2], an overview of 

basic ANN applications in polymer composites was conducted. 

Methodologies reviewed in this paper were used to predict 

fatigue life, wear performance and dynamic mechanical 

properties for the material and its response under combined 

loading situations. Fully connected (FC) networks, using 

backpropagation training algorithms, were primarily used for 

these earlier works targeting direct problems. 

 

For more recent and novel approaches, Chang et al. [3] 

developed an ANN with the desired product dimensions as 

modeling inputs to predict parameters for the thermoforming of 

polymeric foam sheets, which is an inverse problem. This work 

employed the use of a small FC network with layer sizes 

(6, 𝑥0, 𝑥1, 6) and 𝑡𝑎𝑛ℎ activation functions. The inputs to the 

ANN are the thickness measured at six locations while the 

outputs are the processing parameters: heater temperature, plug 

displacement, vacuum time, vacuum pressure, plug velocity and 

plug material type. Multiple experiments were conducted and 

the optimal network size was found to be (6, 5, 2, 6). Prediction 

for six parameters is a rare sight, especially when the reported 

dataset is small (just 40 cases). The data generation method is 

based on single-parameter variation, such that only one variable 

changes while others remain constant. This greatly simplifies the 

problem as the data are not coupled and therefore do not 

effectively allow the ANN to learn the relationships between 

parameters. As the root-mean-square errors (RMSE) or loss 

values for all processing parameters were under 0.01, an 

acceptable accuracy was reported and the method is deemed 

suitable for the specific problem. 
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Simoncini et al. [4] used ANN to predict the maximum stress of 

tensioned ABS coupons undergoing the IR-heating process 

similar in thermoforming. A FC network with three layer sizes 

(5, 11, 1) was used whereby the five inputs are: operating heat 

source, crosshead speed, thickness of sample, distance from heat 

source and elongation of sample. The sole output was the stress–

strain response of the coupon. The dataset only comprises 24 

cases so it is inconclusive as to how good the ANN was at 

generalization. 

 

Leite et al. [5] studied the application of ANN for the vacuum 

thermoforming process. Simulation data were generated and a 

FCNN was used. The five inputs comprise process parameters: 

heating time, electric heating power, mold actuator power, 

vacuum time and vacuum pressure. The outputs are dimensional 

deviation in height, deviation of the diagonal length, geometric 

deviation of flatness and of the side angles. First, the ANN was 

trained to predict the abovementioned deviation groups so as to 

obtain a set of values representative of the final product 

geometry. The authors then proceeded to optimize a target 

function that combines the four metric functions, with the ANN 

serving as a proxy that helped with mapping parameters to the 

target function, that can be understood as a criterion to meet for 

the part design. 

 

Zobeiry et al. [6] studied the application of theory-guided ML 

(TGML) on laminate damage characterization, which is a direct 

problem. In total, 10,000 simulations were conducted. The ANN 

took in five input parameters: Young’s modulus, initial damage 

slope angle and the strains at three different points of the stress–

strain curve with strain-softening response based on MAT81 

material model in LS-DYNA. The training process was carried 

out with a validation split of 70/30 from the dataset and the 

mean squared error (MSE) was the loss function used for the 

evaluation of training quality. Four fully connected NNs were 

trained to each consecutively to predict four parameters: overall 

fracture energy, peak stress, slope of the damage function and 

strain-softening parameter. Knowledge in mechanics was 

evoked to build the chain of NNs where the output of one NN is 

used to guide the prediction of the next parameter. An advantage 
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of this method is that the predicted data are uncoupled. 

Therefore, each NN can learn more effectively. More 

specifically, each NN can have a dedicated input vector and their 

weights can be trained to model one theoretical function only. 

However, the number of required simulations is huge, likely 

making the method infeasible to other engineering problems 

which may have limited data. 

 

Nardi et al. [7] developed an ANN to predict final part attributes 

using the input temperatures of the thermoforming process, 

comparing the results to those from analytical and finite-element 

modeling (FEM) methods. The FC network has the architecture 

(3, 5, 3) with three layers and three output neurons. The small 

architecture was sensible as having more neurons can lead to 

overfitting or long training time. The Bayesian-regularization 

method, different from many other ANN approaches that used 

some variants of backpropagation, was used. It was not 

explained why the Sigmoid activation function was chosen, 

instead of the more popular ReLU function that can help gain 

sparsity when computing and better prevent vanishing gradients. 

 

More recently, Humfeld et al. [8] studied the problem of 

optimizing air temperature cycle in the autoclave for composite 

processing. Due to uncertainties including tool placement, 

convective boundary conditions vary in each run. As a result, 

temperature histories in some of the parts may not conform to 

process specifications due to under-curing or over-heating. 

Recurrent NNs, a class of NNs where data from past inputs are 

remembered, were used in a FC network. This memory of past 

data is taken into account when operating on the current input. 

Compared to FFNN, there is a feedback link in the RNNs. Data 

do not simply flow from the first to last layers but can be sent 

backwards when computing the next input. It has broad 

application in natural language processing due to its ability to 

analyze sequential data. In total, 100,000 simulations with eight 

input parameters comprising heat transfer BCs, thickness of 

composite part, thickness of tool and air temperature profiles 

were conducted. The validation split was 70/30. The ANN is 

used for inverse modeling to predict the bottom tool temperature 

and the center part temperature. Multi-objective optimization, 
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using the same ANN, that predicts the probabilities of the 

temperatures on the composite being acceptable or not, is then 

performed. For each ANN simulation case, if the maximum part 

temperature and part temperature rate fall into a desirable range, 

Tmax < 185 °C, 1 °C/min < Tpart < 3 °C/min, the case is classified 

as “pass”. The outputs to this FCNN would be the failure and 

pass probabilities whereby cases/conditions with high pass 

probability are chosen and a sorting step is used to find the most 

optimal one. 
 

Wanigasekara et al. [9] extended their previous work, which 

built a direct model to predict output characteristics of 

thermoplastic composite laminates used in automated fiber 

placement machines and resolving it using inverse modeling for 

the same manufacturing problem. In the direct method, an ANN 

was used to predict four characteristics of thermoplastic 

composite laminates, namely, elastic modulus, short-beam 

strength/inter-laminar shear strength, maximum flexural stress 

and maximum flexural strain, based on four inputs, i.e., the 

deposition rate, consolidation force, hot gas torch temperature 

and its corresponding nip-point temperature. The inverse 

problem studied here simply reverses the flow of prediction. The 

authors showed that from a small set of 28 experimental data, 

virtual data can be generated [10] whereby the training set for 

the inverse model consisted of predictions made by the direct 

model, excluding outliers, in addition to the original data. This 

approach showed a relationship between the direct and inverse 

models where one can be used to train the other. It was inferred 

that as more data are available, both models can be improved 

with little modification to the training pipeline. 
 

Melaibari et al. [11] applied neural networks to predict the GO-

CuO/water-EG hybrid nanofluid viscosity that is found from the 

process of loading graphene oxide and copper oxide 

nanoparticles into ethylene glycol-water. Two methods were 

studied and compared: neural networks and response surface 

methodology (RSM). The ANNs comprised three layers, with 

the architecture (3, 10, 1). The three inputs are temperature, 

mass fraction and shear rate and the output value is the viscosity. 

Additionally, the Sigmoid activation function was used. 

However, the training setup such as the dataset size, optimizer, 
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etc., was not reported. On the other hand, the RSM uses the 

same three inputs to form a polynomial predicting the viscosity. 

The polynomial consists of 19 parameters that are learned. From 

the experiments, the ANN achieved a mean square error of 

0.0125 while RSM reached 0.166. This is quite sensible, 

considering that the ANN had 3×10 +  10×1 =  40 parameters 

to fine-tune, almost double that of the RSM polynomial. 
 

In many of these works, the neural networks used were small FC 

networks and the main interest came from the workflow which 

can be used as a guideline for other manufacturing ML 

problems. 
 

In the domain of quality control, a few papers have introduced 

the use of CNN. Nuria et al. [12] incorporated CNN into a 

computer vision quality control system for the sealing of 

thermoforming food packages. In particular, the system contains 

multiple components, from a vision software that processes 

images from the camera to a CNN that makes the prediction of 

accepting or rejecting the package. Multiple neural network 

architectures were used: five ResNet configurations, three VGG 

configurations and two DenseNet configurations. Each 

architecture would be trained on all five datasets separately. This 

is to find which dataset fits the real-word scenario the most. In 

total, there are 2978 training images and 628 validation images. 

For each network, it can be trained from scratch or trained from 

a set of weights pre-trained on ImageNet—an extensive dataset 

for object classification, first described in [13]. The input to the 

CNN is a mono-infrared (read black and white) image, while the 

output is a binary decision of accept/reject. For this type of 

prediction, the output could either be one or two neurons. It is 

unclear how pre-trained models are trained or used for 

prediction, since ImageNet contains RGB images that have 

different dimensions from the mono ones. The results shown 

were very promising. All models achieved an accuracy of at 

least 93%. Pre-trained DenseNet161 proved to be the best with 

99%. This work proved the usefulness of CNNs in the real-

world setting. It has also demonstrated that using pre-trained 

models can be helpful. This can serve as a guideline for other 

applications of CNN in manufacturing to create a system of both 

computer vision software and convolutional neural networks. 
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Model Overview and Material Properties  
 

Figure 2 shows the model setup for the thermoforming process 

analysis. The molds are of a double-dome geometry. The 

support frame and mold tools are rigid and the underlying fabric-

reinforced thermoplastic laminate comprises two layers of plain-

woven carbon fiber prepregs that are each 0.3 mm thick. The 

laminate is gripped using spring tensioners and suspended within 

the supporting frame to transport it from the heating stage to the 

molding stage where the slightly tensioned laminate will be 

placed in between the upper and lower molds before being 

pressed to form the part. Tensioners are typically used to reduce 

the amount of laminate sagging and improve laminate alignment 

with the mold when the thermoplastic composite has been 

heated. 
 

 
 
Figure 2: Thermoforming setup (left); Double-dome mold geometry—bottom 

view (right). 

 

The thermoforming behavior of the laminate is mathematically 

captured using various material models. Essentially, the 

mechanisms observed in composite laminate forming are intra-

ply in-plane shear and bending and tool–ply and ply–ply 

interfacial slippage. Table 1 shows the ply properties used for 

the thermoforming analysis in AniFormTM. 
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Table 1: Ply properties used for the plain-woven laminate thermoforming analysis. 

 
General Properties 

Isotropic 

Density 
 = 0 E = 1× 10−16 MPa Rho = 2× 10−9  

In-plane Model 

Fiber 10,000 MPa    

Isotropic Elastic  = 0 E = 0.02295 MPa   

Mooney Rivlin C10 = 0 C01 = 0.0072   

Cross-Viscosity Eta0 = 0.5 EtaInf = 0.04 M = 75 N = −0.17 

Bending Model 

Isotropic Elastic E = 200 MPa    

Cross-Viscosity Eta0 = 2000 MPa EtaInf = 10 MPa M = 7200 N = 0.02 
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The isotropic elastic and the cross-viscosity models are jointly 

used to predict the in-plane and bending behaviors of the plies. 

The cross model is a shear-rate-dependent viscosity model as 

found in the work of Macosko [14]. It is used to model power 

law type of response with a viscosity plateau region at low and 

high shear rates, respectively. The mathematical equations 

below describe the cross model: 

 

𝜂(�̇�) =
𝜂0 − 𝜂∞

1 + 𝑚�̇�1−𝑛
+ 𝜂∞ 

And 

 

𝛔 =
2𝜂(𝛾)̇

J
𝐃 

 

where  is the Cauchy stress, D is the rate of deformation tensor 

and J is the Jacobian of the deformation gradient. 

 

The Mooney–Rivlin model is a hyperelastic model, suited to 

model the response of rubber-like materials. The general 

expression for strain energy W is given as: 

 

𝑊 = ∑ 𝐶𝑖𝑗(𝐼1 − 3)(

𝑛

𝑖=0,𝑗=0

𝐼2 − 3) 

 

with Cij material constants and I1 and I2 the strain invariants. 

AniFormTM uses the two parameter Mooney–Rivlin model, 

where C01 and C10 can be set for n = 1, C00 = C11 = 0. The 

Cauchy stress, , is hence: 
 

𝝈 =
1

𝐽
. (2𝐶10(𝑩 − 𝑰) − 2𝐶01(𝑩−1 − 𝑰)) 

 

where B is the Cauchy–Green deformation tensor and J is the 

Jacobian of the deformation gradient. 
 

A mixed model that combines the models in parallel is used to 

describe the overall deformation mechanism. The total stress 

response is equal to 𝝈 = ∑ 𝝊𝒊𝝈𝑖𝒏
𝒊=𝟏 , where each basic model 

stress tensor, i, can be scaled by a weight. In our modeling, we 
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assume equal weightage between the elastic and viscous 

response, i.e., 1= 1=1. 
 

Part Profile  
 

A geometry for the part profile has to be selected for this 

machine learning work. The double-dome geometry, with 

doubly curved regions of steep walls and small radii, is chosen 

as it is widely used by research groups [15–17] as a suitable 

benchmark for the investigation of forming behavior. The 

groups aim to support the development of reliable and robust 

simulations for forming processes. The benchmark metrics for 

comparison include shear angles, draw-in and possible presence 

of wrinkles. The chosen testing material comprised balanced 

plain weave (BPW), balanced twill weave (BTW) and UBTW 

Twintex comingled glass/PP fabric laminate. 
 

For greater insights on the formability response of plain-woven 

fabric-reinforced thermoplastics, Rietman et al. [17] compared 

the results of AniFormTM simulations of the double-dome (DD) 

geometry with published results. The authors pointed out that 

different laminate orientations alone would lead to completely 

different deformation results, which include the distribution of 

shear angle. It is with this consideration that our work also 

utilizes the double-dome geometry so as to provide insights on 

optimization and also gain wider readership and application. 
 

Thermoforming Parameters Studied  
 

Five process parameters were investigated. These include (1) 

laminate orientation, (2) spring stiffness of tensioners, (3) 

preload of grip tensioners, (4) forming/press Rate and (5) grip 

size. The effect of tool and laminate temperatures could not be 

effectively investigated as temperature-dependent ply properties 

were not available. The parameter values were varied to run a 

total of 200 AniformTM simulations. The values corresponded to 

practical thermoforming process parameter ranges and are shown in 

Table 2. It is noted that the run cases are not a full factorial space of 

the available parameters shown in Table 2. 
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Table 2: Combinations of process parameters used. 

 
Laminate  

Orientation 

(Deg) 

Tensioner  

Stiffness 

(N/mm) 

Preload 

(N) 

Press Rate 

(mm/s) 

Grip Size 

(mm) 

0, +/− 15, 

+/−30, +/−45 

0.5, 1.0, 1.5, 

1.75, 2.0 

2, 4, 8 66.7, 33.3, 

16.7 

0 (point), 

2, 4, 8 

 

Metrics such as the slip-path length and intra-ply shear angle 

results were used to evaluate the quality of the thermoformed 

part. The slip-path length is defined as the total slip that was 

encountered by a certain point at the tool–ply interface as the 

laminate needs to slide along the tooling during press forming 

[18]. The magnitude of this length could give an indication of 

the duration a particular region was exposed to a colder tooling 

surface, which will give a higher possibility of surface defect as 

shown by Figure 3, where in-house experiments and simulations, 

for the thermoforming of four ply 2 × 2 twill carbon fiber-

reinforced thermoplastics, show positive correlation between the 

slip-path length and the location of matrix smearing or optical 

defect. This defect is caused by excessive traction and slippage 

of the solidifying laminate with the cooling surface. Figure 4 

shows experimental verification that regions of the laminate with 

higher ply shear will less likely experience wrinkle formation. In 

the top pictures of Figure 4, the side regions of the 

thermoformed wall showed wrinkles upon forming, which 

correlates to lower ply shear angles at that region. Similarly, in 

the bottom pictures of Figure 4, the two sides of the triangular 

wall surface have higher ply shear resulting in a smoothly 

formed part while wrinkles were observed close to the centerline 

of the triangular surface which corresponds to a lower ply shear 

angle at that region. 
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Figure 3: Good correlation of matrix smearing surface defect with slip-path 

length indicator. 
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Figure 4: Good correlation of wrinkle formation with low ply shear angle. 

 

Figure 5 (left) shows an example of the slip-path length and ply 

shear angle distribution on the double-dome part after 

thermoforming simulation. Higher slip-path lengths (as shown 

by the red regions) are typically near the transition from the 

vertical wall of the part to the excess material, with values as 

high as 15 to 20 mm. The location of high shear angles typically 

depends on the ply orientation relative to the mold. Figure 5 

(right) shows the shear angle resulting from a 0 degree laminate. 

The maximum shear angles could reach +/−40 degrees. 

 

 
 

Figure 5: Example of slip-path length (left) and ply shear angle (right) 

distribution on the formed laminate. 

 

ANN Training Methodology  
Image Data Preprocessing  
 

Machine learning is the process of learning a predictor to 

correctly predict a data space with the objective being either a 

regression (real number) task or a classification (discrete sets) 

task. Many learning paradigms have been proposed over the 

years. Non-ANN methods are specifically designed with 
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restrictive assumptions in mind. They can excel with data spaces 

that fit their assumptions, but are difficult, if not impossible, to 

predict data with complicated distributions. Some important reasons 

why ANNs are used so widely today is that virtually no 

assumptions about the data space are made and that they are 

capable of capturing nuances from the data and provide nonlinear 

predictions. 

 

The first part of this project explores the possibility of predicting 

process parameters based on the product images from finite 

element (FE) simulation contours similar to those in Figure 5. 

Although FE simulation contours were evaluated in our study, 

this does not exclude the use of images from actual formed 

physical products. In our study, the slip-path length (SPL) 

contour images are collected as input data for machine learning. 

To maximize the visual information gained, multiple views of 

the same case run are collected as shown in Figure 6, with the 

bottom view giving an overview of the SPL distribution and 

approximate location with high values, while the front and right 

views give more details of the SPL distribution on the sides of 

the laminate. 

 

 
 
Figure 6: Bottom (left), front (middle) and side (right) views of SPL 

distribution of the double-dome part from AniFormTM simulation. 

 

Before being processed by the ANNs, the images are 

normalized. The normalization step would convert pixel values 

into values between 0 and 1. As the original images have very 

high resolution, using these images would require extensive 

computational resources for ANN training. Therefore, they are 

rescaled to 336 × 336 pixels which allowed for good results 

while not requiring too much computational memory. In some 

cases, it is possible to rescale the images to 224 × 224 pixels 

and still achieve good results. Since the SPL distribution is 

represented by a color contour, it is appropriate to represent an 
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input image as a 3D array with dimensions 𝐶 × 𝑊 × 𝐻, with W 

and H referring to the width and height of the pixel location 

while C refers to the number representing the R-G-B channel 

color. The area surrounding the laminate is just a white plain 

with each pixel having a RGB value of (0, 0, 0). 

 

ANN Architecture in Inverse Modeling  
 

The data processing flow chart for our work is shown in Figure 

7. The learning rate and batch size for all the ANNs are set to 

0.001 and 8, respectively. These hyperparameters are selected 

based on the better convergence of training loss, after rounds of 

model testing with different settings. 

 

The usage of CNNs is not limited to processing square images, 

but it is the most convenient in this study as one can anticipate 

the output of every convolutional layer to be a square image as 

well. One can also opt for a grayscale image if there is no color 

information. The workflow involved 2 stages: image processing 

to extract features and use of the features for regression. For the 

feature extraction phase, a strong CNN is used. Implementations 

of many popular CNNs can be found at Pytorch Vision GitHub 

repository [19]. These CNNs have been used widely in AI 

research and their performances have been well-documented. 

Originally, they were benchmarked based on the task of object 

classification and the results are summarized in [20]. Their 

applications spanned multiple fields, mostly in computer vision, 

such as in object detection [21] and facial recognition [22]. In 

the field of manufacturing, Nuria et al. [12] showed that CNNs 

can be used in quality control. Even though these models were 

developed for image classification, it is easy to modify them to 

perform regression. The only modifications are the input and output 

dimensions. 
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Figure 7: Data processing flow chart. 

 

The AlexNet [23] and the ResNext-101 (variant of ResNet) 

CNNs are selected for the work. Essentially, AlexNet has a 

smaller threshold number of parameters/weights and is simpler 

in nature (normal convolutional block vs. residual block) 

compared to ResNext, so its learning power is limited. However, 

when a task is simple, the AlexNet model will require less time 

to train. The input to both networks is a 3D array 𝐶 × 𝑊 × 𝐻 

representation of an image. Table 3 shows the AlexNet architecture 

that was used in our study for the prediction of laminate orientation 

angle, and with the final layer having one output neuron. 
 

ResNet [24] stands for residual network where a residual block 

is being used instead of traditional Conv block similar to in 

AlexNet so that when the input is passed through the Conv 

layers, and at the final step, the original input can be added to 

the processed output to help the network gain back some 

information that could have been lost in the Conv process. 

ResNext [25] is a variant of ResNet that utilizes an enhanced 

kind of residual block. Figure 8 shows a normal ResNet block 

(with 3 weight layers) and the ResNext block architecture. The 

exact configuration used in this study is ResNext-101-32x8d 

where cardinality (the number of paths) is 32, depth (the number 

of operations in each path) is 3 for each block and the width (the 

number of output channels) of each block is a multiple of 8. The 

block illustrated in Figure 8 shows one of the many blocks used 

in the model. 
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Table 3: The AlexNet architecture adopted for this study. 

 
Layer No. of Filters/  

Neurons 

Filter 

Size 

Stride Padding Size of 

Feature Map 

Activation 

Function 

Input - - - - 3 × 224 × 224 - 

Conv 1 64 11 × 11 4 - 64 × 54 × 54 ReLU 

Max Pool 1 - 3 × 3 2 - 64 × 26 × 26 - 

Conv 2 192 5 × 5 1 2 192 × 26 × 26 ReLU 

Max Pool 2 - 3 × 3 2 - 192 × 12 × 12 - 

Conv 3 384 3 × 3 1 1 384 × 12 × 12 ReLU 

Conv 4 256 3 × 3 1 1 256 × 12 ×12 ReLU 

Conv 5 256 3 × 3 1 1 256 × 12 × 12 ReLU 

Max Pool 3 - 3 × 3 2 - 256 × 6 × 6 - 

FC 1 256 × 6 × 6 × 4096 - - - 4096 ReLU 

FC 2 4096 - - - 4096 ReLU 

FC 3 4096 - - - 1 - 
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Figure 8: Residual block vs. ResNext block. Each layer is represented as the 

(number of input channels, filter size, and the number of output channels. 
 

To help with training, the dataset is normalized or rescaled to [0, 

1]. The normalization conversion is given as follows: 
 

• Laminate orientation, 𝑥1 → 𝑥1
1 = (𝑥1 + 45)/90. 

• Tensioner stiffness, 𝑥2 → 𝑥2
1 = 𝑥2/2. 

• Preload, 𝑥3 → 𝑥3
1 = 𝑥3/8. 

• Press rate, 𝑥4 → 𝑥4
1 = 𝑥4/100. 

• Grip size, 𝑥5 → 𝑥5
1 = 𝑥5/8. 

 

There are 2 approaches to building the predictor system. One is 

to use 1 ANN to predict all 5 output parameters, or to use 5 

ANNs to each predict 1 parameter. The first approach is called 

MultiVar, while the second is called SingleVar. In MultiVar, a 

ResNext-101 model is used to predict all 5 process parameters. 

In SingleVar, an AlexNet model is used to predict the first 

parameter (laminate orientation angle) and 5 ResNext-101-

32x8d models are used to each predict the remaining 5 

parameters. Compared to other parameters, the laminate 

orientation angle is easier to predict using the bottom view and 

smaller image size, so using AlexNet in SingleVar would save a 

lot of training time due to the smaller number of parameters. Our 

preliminary experiments showed that Adam [26] was the 

preferred training algorithm other than stochastic gradient 

descent (SGD) [27]. The reason being with SGD, a longer 

training time would be required while yielding the same 

prediction accuracy, as also reported by Wilson et al. [28]. 
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However, SGD has recently been shown to provide better 

generalization over adaptive optimizers [29]. From our point of 

view, the current work is a foundation step for future projects. 

Therefore, using Adam is a way to test the water. 
 

To measure the accuracy of prediction, the concept of a loss 

function is needed. A loss function 𝐿 measures the difference 

between the predictions by ℎ and the labels of a set of data. In 

gradient descent—the baseline training algorithm for ANNs—

the derivative of 𝐿 is used to “guide” the learning parameters 

such that ℎ heads towards a local minimum. In practice, the loss 

on a validation set 𝑆′ (whose samples are not in the training set 

𝑆) tells how well the training is going and how good the ANN is 

at predicting unseen data. Two types of loss function are used in 

this study: 
 

• Mean absolute error (MAE): 
 

MA𝐸(ℎ,𝑆) =
1

|𝑆|
∑|ℎ(𝑥𝑖) − 𝑦𝑖|

𝑥𝑖∈𝑆

 

• Mean squared error (MSE): 

𝑀𝑆𝐸(ℎ,𝑆) =
1

|𝑆|
∑(ℎ(𝑥𝑖) − 𝑦𝑖)2

𝑥𝑖∈𝑆

 

 

where ℎ is a hypothesis, 𝑆 is a set of (𝑥𝑖, 𝑦𝑖) and 𝑦𝑖 is the label 

of 𝑥𝑖. When 𝑦𝑖 is a 𝑑-dimensional vector (representing multi-

dimensional data), the difference |ℎ(𝑥𝑖) – 𝑦𝑖| is the average of 

the differences at each of the 𝑑 positions. 
 

The MSE loss function was used during training, but the MAE 

was used during validation. This is because MAE is more 

comprehensible for engineering analysis purposes: for instance, 

an MAE loss of δ for a variable 𝑥 would indicate that the 

prediction is in the range [𝑥 − δ, 𝑥 + δ]. Using MSE loss would 

require complex conversion to get to the physical value, 

especially when the result is multi-dimensional. The advantage of 

using MSE loss during training is to help ensure the trained model 

has no outlier predictions with huge errors, since the MSE puts 

larger weight on these errors due to the squaring function. 
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Optimization of Slip-Path Length and Shear Angle in 

Direct Modeling  
 

The first set of ANN models help us predict the maximum SPL 

and the proportions of in-range nodes. Subsequently, the 

optimization targets are to minimize the maximum SPL and to 

maximize the proportion of in-range nodes while minimizing the 

proportion of excessive nodes. The first problem is a standard 

minimization problem while the second one must be framed as 

the minimization of a particular function. Let the proportion of 

in-range and excessive nodes be 𝑝1 and 𝑝2, respectively. Then a 

target function can be: 
 

𝐹1 = − (𝑝1 +
𝜖

𝑝2 + 𝜖
) 

 

where ϵ is a small positive number. The function has a minimum 

value when (𝑝1, 𝑝2) = [1,0]. For comparison, the target function 

 

𝐹2 = −𝑝1 
 

which ignores 𝑝2 was also used. 

 

For any target function, using Scipy library [30], we can call the 

built-in minimization/optimization function [31] to minimize the 

target value. The inputs to the target function, which have bounds 

of [0,1], would be the five process parameters as previously 

mentioned. 
 

Since the optimization process requires an initial guess, this 

initial value was randomized. One could use the best case from 

the dataset, but it could lead the optimization to a wrong local 

minimum. And since a local minimum is returned, an easy way 

to find a good minimum is to run the process many times. 
 

Results 
 

This section summarizes the training statistics and validation 

accuracy of the ANNs described in the sections above. It is 

observed that not all process parameters are equally influential. 

This means that changing the values of some parameters would 

only cause very subtle differences to the AniFormTM simulation 

results. The most influential parameter is the laminate 
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orientation angle, as it determines where defects (high SPL 

values) could form. An example of a lower influential parameter 

is the grip size. This difference in parameter sensitivity does not 

affect the direct models, but greatly hampers the inverse models’ 

training to generalize. For all training graphs, the X-axis 

represents the number of training epochs passed and the Y-axis 

represents the loss value. Each training graph would show the 

evolution of both the mean square error (MSE) and the mean 

absolute error (MAE) losses over the training cycles or epochs. 

For most cases, the losses will progressively reduce and 

converge to lower values or errors. 
 

Inverse Modeling  
 

Figures 9 and 10 show the training MSE loss (blue line) and 

validation MAE loss (red line) for MultiVar and SingleVar 

regression. The losses in the MultiVar represents the average of 

all the five predicted outputs, while Figures 10a,b show the 

training graphs for laminate orientation and grip size. The 

training graphs for other process parameters are similar to those 

presented in the figures. The training and validation loss 

achieved for MultiVar regression is 0.001245 and 0.14693, 

respectively, while the losses for SingleVar (laminate 

orientation) are both lower than 0.0085. These values are 

comparable to those obtained by Chang et al. [3]. 
 

 
 

Figure 9: Graph of training and validation loss versus epoch (MultiVar 

prediction). 
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Figure 10: Training statistics for SingleVar for (a) laminate orientation and (b) 

grip size. Each graph denotes the network architecture and the parameter that it 

predicts. 

 

Table 4 summarizes the prediction accuracy of the ANNs on the 

validation set. The “Abs Error” columns refer to the average 

absolute difference (MAE) between the predicted outcomes and 

the actual labels. For practical manufacturing purposes, the 

range of error is acceptable because laminate rotation is usually 

performed by steps of 15 degrees, spring stiffness by 0.5 N/mm, 

preloads by 1N and grip sizes by 2 mm or more, on most 

exploratory test settings. 

 
Table 4: Summary of training statistics and accuracy for inverse modeling. 

 
Parameters MultiVar Abs 

Error 

SingleVar Abs 

Error 

Laminate Orientation Angle 9.5° 0.7° 

Spring Stiffness of Grip 

Tensioners 

0.32736 N/mm 0.30024 N/mm 

Preload of Grip Tensioners 1.77136 N 2.02176 N 

Press Interval (= 1/Press Rate) 1.9727 s 1.1719 s 

Grip Size 1.2785 mm 1.3362 mm 

 

The laminate orientation angle has the most effect on part 

quality and it is also the easiest parameter to predict. The reason 

being the orientation angle would affect the overall shape of the 

thermoformed laminate, inclusive of the excess material. Ideally, 

the ANNs only need to extract information on the shape of the 

laminate’s edges in order to predict this parameter. In SingleVar, 

this ease of prediction can be seen clearly as the average error of 

prediction is less than 1 degree. For engineering purposes, this 

kind of error is effectively insignificant since laminate 
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orientations employed for actual thermoforming are likely varied 

by angle steps of at least 15 degrees. The remaining parameters 

are less influential to the result images, so the validation loss is 

not as impressive, and these parameters also have a larger 

margin of error. The predicted parameters can be off by a 

considerable value, but the thermoformed laminate can still have 

the same SPL distribution because these parameters have a 

smaller effect than the predominant parameter which is laminate 

orientation. It is noted that MultiVar and SingleVar produced 

comparable results for these parameters. 

 

Another observation is that the prediction accuracy for 

MultiVar, on the laminate orientation angle, is poorer than 

SingleVar. This can be attributed to the fact that the ANN has to 

extract features used for the prediction of all five parameters. 

Therefore, features related to this parameter might be affected or 

mixed with features that are used to predict other parameters. 

This adds another layer of complexity for MultiVar and thus can 

be an argument against the use of MultiVar in general. 

Furthermore, the MSE loss does not weigh individual differences 

at each position of the output vector. Consequently, during training, 

the orientation angle is not given more attention than other 

parameters, while this should have been the case. A solution for 

future work would be to have a weighted MSE loss function: 

 

 𝐿2(𝑥, 𝑦) =
1

𝑛
∑ 𝛾𝑖(𝑥𝑖 − 𝑦𝑖)2 

 

where  𝑥, 𝑦 ∈ 𝑅𝑛 and 𝛾𝑖 are weight values corresponding to 

position 𝑖. This would ensure that more important parameters are 

emphasized and is an example of utilizing domain knowledge in 

the design of ANNs. 

 

Furthermore, there are challenges that come with the image 

processing approach. Firstly, to the authors’ knowledge, there is 

no reported literature that argues that the chosen CNNs are the 

most appropriate for regression using multi-dimensional inputs. 

They were only tested for image classification problems. 

Secondly, this approach comes with a huge scalability problem. 

The input dimension of the images is very large—typically three 
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RGB channels × three views × (336 × 336) pixels—leading to 

the CNN models having more than 80 million trainable 

parameters for the test set cases. As a result, training becomes 

both time consuming and computationally expensive, making it 

more difficult to fine-tune hyperparameters such as learning rate 

and batch size. Finally, image analysis can require an extensive 

setup to curate data and perform extensive testing, as in the case of 

Nuria et al. [12]. This is likely to present itself as a greater 

roadblock compared to fine-tuning. 

 

In order to make a meaningful comparison, the predicted 

parameters are re-input into the AniFormTM simulation to obtain 

the SPL contour plot to compare against the contour plot from 

the actual parameters used. Figures 11 and 12 are examples of 

good predictions made by the ANNs. On the other hand, Figure 

13 shows moderately accurate predictions where there is a 

greater deviation in the predicted parameters from the actual 

parameters: SingleVar prediction is not too far from the dataset 

image, while MultiVar prediction has more area with high SPL 

(dark red regions). The results show that the ANN is able to 

predict laminate orientation, spring stiffness, preload and grip 

size reasonably well. The MultiVar prediction accuracy is 

slightly poorer as typically much larger datasets would be 

required for the multi-variable training. 
 

 
 

Figure 11: Example of good prediction of SPL (1): (a) Actual parameters: 

45/45 laminate, S0.25 PL8, rate 16.67, point, grip 0; (b) MultiVar prediction: 

50/50 laminate, S0.15 PL5, rate 45.48 (2.2 s), grip 4; (c) SingleVar prediction: 

45/45 laminate, S0.27 PL6, rate 27.85 (3.6 s), grip 4. 
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Figure 12: Example of good prediction of SPL (2): (a) Actual parameters: 

15/15 laminate, S0.5 PL8, rate 33.33 (3 s), grip 8; (b) MultiVar prediction: 

12/12 laminate, S1.18 PL5, rate 60.52 (1.7 s), grip 8; (c) SingleVar prediction: 

15/15 laminate, S0.49 PL5, rate 26.63, grip 8. 

 

 
 

Figure 13: Example of moderately accurate prediction of SPL (3): (a) Actual 

parameters: 0/0 laminate, S1.0 PL2, rate 16.67 (6 s), grip 4; (b) MultiVar 

prediction: 8/8 laminate, S1.17 PL5, rate 51.81 (1.9 s), grip 6; (c) SingleVar 

prediction: 0/0 laminate, S1.04 PL5, rate 24.26 (4.1 s), grip 6. 

 

Optimizing Slip-Path Length  
 

For the direct optimization problem, the ANNs only need to 

learn to predict an output (i.e., SPL) based on the fix process 

parameters; the problem becomes single-variate regression. 

Therefore, image processing is not necessary. This problem can 

be solved using a FCNN. The optimal architecture was found to 

be (5, 32, 16, 8, 1): input layer with 5 parameters, followed by 3 

hidden layers with 32, 16 and 8 neurons, respectively, and the 

output layer with 1 neuron. The ANN simulation results from 

inverse modeling can be reused to form the dataset for this 

problem. 

 

Prediction of Maximum Slip-Path Length (SPL) 

 

The laminate response from the AniFromTM simulation is 

represented by a mesh of nodes, each with a corresponding SPL 

value. For the prediction of maximum slip-path length (SPL), 

the ANN uses a wrapper Python function to take in the five 
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process parameters as inputs with normalized values of [0,1], 

and the output of the ANN would be the maximum SPL of all 

the nodes. Therefore, to train or validate the ANN, the maximum 

SPL found in the mesh of a case is used as a label for that case. 

It was found that the highest maximum SPL in the dataset is 

26.448 but the maximum values in most of the cases are 23 or 

lower. The training graph for predicting maximum SPL is shown 

in Figure 14. The training and validation simulations were set to 

1000 epochs (training cycles). The figure shows that the losses 

reduce significantly from 0.75 to around 0.1 within the first 5 

epochs (or training cycles), and then from 0.1 to around 0.05 

after 20 epochs. The error then fluctuates around this value for 

subsequent epochs. The validation loss seems higher than the 

training loss, but the two values should not be compared directly 

since the mean squared errors (with values below one) would 

undoubtedly yield smaller values. At the end of the neural 

network analysis, the parameter predictions from the cycle with 

the least error, and hence the most optimized case, are extracted. 

The best result achieved an MAE validation loss of 0.024877, 

while the lowest training error is 0.000911. This is comparable 

to the prediction accuracies achieved by Chang et al. [3]. 

 

 
 

Figure 14: Graph of training and validation loss versus epoch (maximum SPL 

prediction). 

 

Several optimization runs were initiated because it is likely that 

the solution would not be unique, considering the multiple 
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parameters that are to be considered. The best predicted 

minimum and its corresponding process parameters are listed as: 

 

Max SPL: 14.409; Parameters: lam −34/−34, S0.18, PL1, rate 

0.96 (103.87 s), grip 6. 

 

For comparison, the lowest maximum SPL available in the 

dataset is 15.863. This corresponds to the process parameters: 

30/30 laminate, S0.5 PL2, TT 150, rate 16.67 (6 s), grip 8. The 

optimized outputs from ANN are used to re-run the AniFormTM 

simulation to quantitatively validate that the SPL values have 

indeed been reduced. Figure 15 compares the SPL contours 

between the best case in the dataset and the optimized case, 

where the actual maximum SPL value of 13.09978 (from 

AniFormTM) is obtained, which is better than the ANN predicted 

value of 14.409. This corresponds to a 17.4% reduction in 

maximum SPL. 
 

 
 

Figure 15: Comparison of SPL distribution for the best case in the dataset 

versus the optimized case with parameters derived from ANN. 

 

Some insights were obtained from the ANN outputs, with regard 

to the double-dome geometry and PW/SAN laminate system. 

Firstly, the optimized laminate orientation appears to be neither 

at 0 nor 45 degrees but rather at an angle of about 35 degrees, 

which is slightly less than 45 degrees. Secondly, lower preload, 

spring stiffness and ramp rates seemed to be the preferrable 

conditions to reduce surface defects on the part. Lastly, a finite 

length of gripping edge seemed to be preferred over point grip. 
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Optimizing Shear Angle  
 

Prediction of Proportion of Nodes with Designated Shear Angle 

Ranges 

 

It was arbitrarily predetermined that the desired ply shear angle 

(SA) for the composite laminate falls into the range between 40 

to 50 degrees. The understanding was to allow the ply to deform 

more by shear than in bending, so as to reduce the possibility of 

part wrinkling, provided that the shear values are below that for 

shear locking of the warp and weft. The setting of this shear 

angle coverage depends on the polymer–fabric architecture 

system of the ply and is typically determined from the stable 

slope region of force versus shear angle plots of the picture-

frame or bias-extension test. 

 

In the ANN, any nodes that satisfy this condition are labeled “in-

range” while those whose shear value is above 50 degrees are 

labeled “excessive”. Absolute values are taken since the shear 

can be positive or negative depending on the shear direction. An 

ANN was developed to predict the proportion of in-range nodes 

in the mesh (# of in-range nodes/total # of nodes). As the label 

values are between 0 and 1 by nature, no normalization or 

rescaling was required. Figure 16 shows the training loss for the 

prediction of in-range nodes with shear angles between 40 to 50 

degrees. The training and validation simulations were also set to 

1000 epochs (training cycles). The figure shows that the training 

losses significantly reduce from 8 × 10−5 to below 1 × 10−5 over 

the first 200 epochs (or training cycles), while validation losses 

reduced from 5 × 10−³ to 2.5 × 10−³ over 500 epochs. The losses 

subsequently stabilize around these values from 500 epochs 

onwards. 
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Figure 16: Graph of training and validation loss versus epoch (In-range shear 

prediction). 
 

For predicting the proportion of in-range nodes, the best MAE 

loss was found to be 0.002321. After various runs, the best 

outputs with their corresponding process parameters are: 
 

(𝑝1, 𝑝2) = (0.0378,0.0063); lam −15/−15, S0.02 PL8, rate 

76.54 (1.31 s), grip 0 (Point). 
 

where 𝑝1 and 𝑝2 refer to the proportion of in-range and 

excessive nodes, respectively, and the corresponding process 

parameters obtained for this case are then used to rerun the 

AniFormTM thermoforming simulation to obtain the actual shear 

angle contour to validate the increase in shear angle coverage. In 

the test dataset, the highest in-range node proportion is 0.02999, 

with the process parameters as follows: lam 30/30, S0.25 PL8, 

rate 33.33 (3 s), grip 0 (Point). Its shear angle distribution is 

shown in Figure 17. The highest p1 value found from the rerun 

simulation is 0.0394, which is about 30% more than the best 

case in the dataset. From the shear angle contour plots, it was 

observed that the process parameters used in the optimized case 

would result in higher shear around the transition region 

between the excess material and the final part, which will be 

beneficial to mitigate wrinkling. The results consistently show 

that point grips would initiate greater regions of ply shear than 

edge grips of finite lengths. Hence, the grip type used might 

affect the maximum split-path length and shear angle coverage 

in opposite ways. 
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Figure 17: Comparison of shear angle distribution between the best case in the 

dataset (left) and the optimized case (right); bottom views (top) and side 

views (bottom). 

 

Conclusions and Future Directions  
 

Our work has shown that machine learning methods can help in 

defect analysis and inverse problem tracing, as well as in 

manufacturing process optimization and in deriving insights. 

The first ANN is able to analyze a given contour image of split-

path length and predicts the laminate orientation, tensioner 

stiffness and preload parameters reasonably well, with better 

predictions from SingleVar than MultiVar since the latter 

requires much larger datasets than what we have provided 

currently. The second ANN is able to output the optimized 

process parameters for a reduced split-path length of 17.4% and 

an increased forming shear angle coverage of 31%. The image 

analysis method is novel for composite manufacturing and 

photos from actual parts may be used instead of simulation 

results, such as through computer vision methods. 

 

This pioneering work creates a foundation to consider other 

challenging aspects of data-driven models, such as application 

robustness and training efficiency. The presented approach for 

optimizing individual metrics allows engineers to find local 

minima depicting a desirable set of process parameters. A 

combined target function that takes into account multiple metrics 
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is needed to obtain the global minima for the best set of process 

parameters. The ANNs could also take into account the 

manufacturing constraints to provide more useful neural network 

predictions. In our future work, the developed models will be 

used in transfer learning to predict and optimize the different 

thicknesses of laminate and final part geometries rather than the 

presented double-dome geometry. 
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