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Abstract  
 
Reactive oxygen species (ROS) are important molecules in the 

living organisms as a part of many signaling pathways. 

However, if overproduced, they also play a significant role in the 

development of cardiovascular diseases, such as arrhythmia, 

cardiomyopathy, ischemia/reperfusion injury (e.g., myocardial 

infarction and heart transplantation), and heart failure. As a 

result of oxidative stress action, apoptosis, hypertrophy, and 

fibrosis may occur. MicroRNAs (miRNAs) represent important 

endogenous nucleotides that regulate many biological processes, 

including those involved in heart damage caused by oxidative 

stress. Oxidative stress can alter the expression level of many 

miRNAs. These changes in miRNA expression occur mainly via 

modulation of nuclear factor erythroid 2-related factor 2 (Nrf2), 

sirtuins, calcineurin/nuclear factor of activated T cell (NFAT), or 

nuclear factor kappa B (NF-κB) pathways. Up until now, several 

circulating miRNAs have been reported to be potential 

biomarkers of ROS-related cardiac diseases, including 

myocardial infarction, hypertrophy, ischemia/reperfusion, and 
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heart failure, such as miRNA-499, miRNA-199, miRNA-21, 

miRNA-144, miRNA-208a, miRNA-34a, etc. On the other hand, 

a lot of studies are aimed at using miRNAs for therapeutic 

purposes. This review points to the need for studying the role of 

redox-sensitive miRNAs, to identify more effective biomarkers 

and develop better therapeutic targets for oxidative-stress-related 

heart diseases.  
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Introduction  
 
Despite advances in disease prevention, diagnosis, and treatment, 

cardiovascular diseases (CVDs) are still in the leading position 

as the cause of mortality and morbidity worldwide. It is 

estimated that by 2030, nearly 23.6 million people will die from 

CVDs, primarily from heart disease and stroke, per year [1,2]. 

As both reactive oxygen species (ROS) production and 

microRNA (miRNA) expression signature have been associated 

with the development of CVDs, it is important to understand the 

crosstalk between ROS and miRNAs [3,4]. 

 

ROS are constantly released during mitochondrial oxygen 

consumption for energy production. Any imbalance between 

ROS production and its scavenger system induces oxidative 

stress. Oxidative stress, a critical contributor to tissue damage, is 

well-known to be associated with various diseases [5]. It has 

been long recognized that an increase of ROS can modify the 

cell-signaling proteins and has functional consequences, which 

mediate pathological processes included in the development of 

CVDs related to hypoxia, cardiotoxicity, and ischemia-

reperfusion [6]. It was reported that myocardial ROS levels were 

elevated in animal models of ischemia/reperfusion injury [7] and 

heart failure [8]. Recent data from T. Wongsurawat study reveal 

elevated level of ROS species at the proteomic and 

transcriptomic level in the vessel wall [9-11]. 
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MiRNAs are integrated into a group of small, naturally occurring 

and noncoding RNAs (size 21–25 nucleotides), which modulate 

gene expression at the post-transcriptional level. MiRNAs play a 

role as regulators of gene expression through binding to 

complementary sequences on the 3′-untranslated region (3′-

UTR) of their target mRNA, thus inhibiting mRNA translation or 

promoting mRNA degradation [12,13]. Many miRNA genes are 

transcribed by enzyme RNA polymerase II from intergenic, 

intronic, or polycistronic loci as a long primary miRNA 

transcript (pri-miRNA), which is then cleaved by the enzyme 

Drosha endoribonuclease to a 70-nt-long hairpin structure with 

2-nt-30 overhangs (pre-miRNA). Pre-miRNA is thereafter 

exported to the cytoplasm and processed by a second 

endoribonuclease enzyme (Dicer), to form a 22-nucleotide-long 

miRNA:miRNA* duplex with partial complementarity. One 

strand of this duplex then combines with the Argonaute (AGO) 

protein into the RNA-induced silencing complex (RISC), while 

the passenger strand gets degraded. One mRNA can contain 

multiple binding sites for different miRNAs, thus creating a 

complicated network of miRNA–mRNA interactions. MiRNAs 

are distributed in tissue-specific patterns and are able to regulate 

the expression of approximately 30% of human genes [14-16]. 

 

Numerous studies have shown that miRNAs have essential roles 

in cardiovascular development, pathology, regeneration, and 

repair and could be used for the diagnosis and prevention of 

cardiovascular diseases, such as hypertrophy, myocardial 

infarction, contractility defects, arrhythmias, etc. [3,17-21]. In 

response to increased ROS or stress stimuli, CVDs are obviously 

initiated and progressed by apoptosis, autophagy, necrosis, and 

fibrosis, as well as proliferation and migration of cardiomyocytes 

and endothelial cells, cardiac fibroblasts, and vascular smooth 

muscle cells. It was documented that miRNAs are involved in 

these processes [3,18,22]. Moreover, some miRNAs have been 

assigned as regulators of oxidative stress in the cardiovascular 

system by targeting ROS generators, antioxidant signaling 

pathways, and selected antioxidant effectors [23]. 

 

In this review, we tried to highlight recent findings about the 

association of miRNAs with the development of CVDs, 
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including atherosclerosis, myocardial infarction, cardiac 

hypertrophy, or heart failure. There is evidence of interactions 

between cardiac miRNAs and ROS, but further studies need to 

be provided to reveal the molecular mechanisms of miRNAs 

regulating CVD diseases under ROS-related stress conditions. 

 

Oxidative Stress and Cardiovascular System  
 

The common pathological feature of most cardiac and vascular 

diseases is an imbalance of biological system in oxidation and 

antioxidation or between the generation and detoxification of 

ROS, which is generally called oxidative stress [24,25]. 

 

ROS are small reactive molecules implicated in the regulation of 

various cell functions and biological processes [26]. They are 

defined as molecules containing at least one atom of oxygen with 

higher reactivity than molecular oxygen, like superoxide anion 

(O2
−
), hydrogen peroxide (H2O2), hydroxyl radical (OH

▪
), 

peroxynitrite (ONOO
−
), hypochlorous acid (HOCl), and others 

[27]. In smaller or moderate concentrations, ROS can serve as 

signaling molecules, but an uncontrolled higher level of ROS 

leads to free-radical damage associated with the structural and 

functional alterations of proteins, lipids, and deoxyribonucleic 

acid [28,29]. 

 

The generation of ROS could be divided into two categories. 

Firstly, they are produced mainly by mitochondrial oxidative 

metabolism as a by-product or waste product, and secondly, as a 

cellular response to stress, xenobiotics, cytokines, and bacterial 

invasion, where ROS are formed intentionally as part of a signal 

transduction pathway [6,30]. Most relevant enzymatic sources of 

ROS are the nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidases (NOXs), xanthine oxidase, uncoupled nitric 

oxide (NO) synthase, and mitochondria [24]. To the other 

incentives belong tumor necrosis factor-alpha (TNF-α), 

epidermal growth factor, Interleukin-1beta (IL-1β), hypoxia, and 

irradiation [6]. 

 

To ensure homeostasis in these processes, proteins with an 

antioxidant activity that protect an aerobic organism from 
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increased toxicity of ROS have been found [31]. Major 

antioxidant proteins are superoxide dismutases (SODs), which 

catalyze conversion of superoxide into oxygen and hydrogen 

peroxide [32]. Hydrogen peroxide produced by SOD is then 

subsequently transformed into water and oxygen by other 

antioxidant proteins, glutathione peroxidases, catalases, and 

thioredoxins [33]. Taken together, to keep redox equilibrium is 

very difficult due to a variety of mechanisms, and, in the case of 

the antioxidant cell defense system that is suppressed by 

oxidative stress, many diseases can occur, especially in the 

cardiovascular system, where oxygen delivery to myocardium is 

approximately 1.6–1.8 times higher than in other tissues [34]. 

 

Increased levels of ROS are unfavorably implicated in the 

myocardial calcium handling, cardiac remodeling induced by 

hypertrophic signaling, apoptosis, and necrosis. Oxidative stress 

similarly has a negative effect on blood vessels, their function, 

angiogenesis, apoptosis, vascular tone, and genomic stability 

[24]. This suggests that cardiovascular risk factors with elevated 

ROS levels are interconnected with endothelial dysfunction. 

Dysregulated generation of ROS also contributes to the 

pathogenesis of atherosclerosis, heart failure, cardiomyopathy, 

and cardiac hypertrophy [35] (Figure 1). 

 

 
 
Figure 1: Impact of oxidative stress on the heart. Overproduction of reactive 

oxygen species (ROS) contributes to different cardiac pathologies, e.g., 

hypertrophy or fibrosis. These pathological changes in the heart may result in 

cardiovascular diseases, which may subsequently contribute to the production 

of ROS.  
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It was observed that activation of neuroendocrine pathways, 

namely sympathetic and the renin-angiotensin-aldosterone 

system in patients with failing myocardium, was associated with 

oxidative stress [36,37]. In experimental and human studies 

dealing with heart failure, the elevated activity of NOX has been 

consistently observed [37,38]. For example, the implication of 

NOX isoforms in the development of left ventricular 

hypertrophy (LVH) was demonstrated in NOX2 knockout mice, 

where infusion of Angiotensin II resulted in less incidence of 

LVH compared to control wild-type mice infused with the same 

concentration of Angiotensin II induced LVH [39]. A similar 

conclusion was drawn from neonatal rat ventricular 

cardiomyocytes where activation of NOX2 was associated with 

angiotensin II-induced cardiac hypertrophy [40]. Besides that, 

inactivation of NOX2 leads to the reduction of infarct size in a 

model of myocardial infarction [41]. Activation of NOX4 also 

has an impact on heart failure [42]. This implication was shown 

in experimental study with transgenic mice with cardiac-specific 

overexpression of NOX4, where incidence of fibrosis, apoptosis, 

and enlargement of cardiomyocytes were found [43]. Besides, 

upregulated expression of NOX4 was associated with 

overexpression of lysocardiolipin acyltransferase-1, which was 

implicated in the catalysis of cardiolipin synthesis [44]. 

Upregulated lysocardiolipin acyltransferase-1 by oxidative stress 

damages phospholipid cardiolipin, a component of the inner 

mitochondrial membrane leading to increased levels of O2
−
, 

ONOO
−
, and NO radicals, which results in the decline of ATP 

production and disorganization of the dimeric ADP/ATP carrier 

functional capacity [45,46]. Unlike this, in mice with cardiac-

specific deletion of NOX4 with applied transverse aortic 

constriction, the pathological changes were less pronounced 

[43]. Expression and activity of xanthine oxidase were also 

increased in patients with heart failure, whereas inhibition of this 

enzyme ameliorated heart contractility, as well as endothelial 

dysfunction [47]. 

 

Hypertension, hypercholesterolemia, hyperglycemia, and 

atherosclerosis are also typical with the activation of ROS 

enzyme sources [24]. Elevated ROS levels, activation of NOX 

[48], impairment of NO/cGMP signaling, and subsequently 
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reduced acetylcholine-mediated vasodilation in hypertension 

models were induced by Angiotensin II stimulation [49]. 

Moreover, a decline in superoxide dismutase and glutathione 

peroxidase activity were inversely correlated with blood pressure 

in untreated hypertensive patients [50]. The process of 

atherosclerosis is closely linked with lack of NO production or 

its accelerated scavenging [51]. Generated ONOO
−
 induces 

transformation of smooth muscle cells into foam cells, as well as 

release of matrix metalloproteinases, which degrade 

atheromatous plaque and basement membrane of the endothelial 

cells leading to physical disruption of the plaques [26]. 

 

Another situation of oxidative-stress-related cardiac damage is 

heart transplantations, where the donor heart, graft, is exposed to 

cold ischemia-reperfusion injury associated with increased ROS. 

This leads to graft dysfunction, like allograft rejection, delayed 

graft function, or primary nonfunction, as well as to endothelial 

and parenchymal cell injury [52,53]. To increase success of the 

heart transplantation, experimental studies have focused on the 

enrichment of antioxidative substrates in cardioplegia solution 

and pump prime solution [54-59], suggesting the importance of 

continuous research into antioxidants. 

 

Oxidative Stress and MiRNA  
 

Many previous studies have demonstrated that multiple 

molecular mechanisms and signaling pathways can regulate 

oxidative stress [60]. Growing evidence has confirmed that 

miRNAs can be considered as potential targets and modulators 

of oxidative-stress-related pathways [61]. By analysis of miRNA 

expression signature implicated in oxidative stress-related 

pathways, several miRNAs were identified and termed as 

oxidative stress-responsive miRNAs [62]. The increasing 

number of studies shows that intracellular ROS can either inhibit 

or induce miRNA expression level, which results in subsequent 

biological effects through regulation of their direct target genes 

(Figure 2) [63]. Among them, several pathways (Nrf2—nuclear 

factor erythroid 2-related factor 2, SIRT1—sirtuin 1, and NF-

κB—nuclear factor kappa B) have been the most intensively 
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studied in connection with oxidative stress and miRNA. These 

will be further described in this section. 

 

 
 
Figure 2: Selected signaling pathways (Nrf2, SIRT1, and NF-κB) influenced 

by miRNAs in situations with oxidative stress. ROS either inhibit or induce 

miRNA expression level. This leads to subsequent regulation of their target 

genes. Upper arrow represents increase of oxidative stress/activation of 

signaling pathway.  

 

Nrf2 Pathway  
 

Nrf2 plays a part in the cellular antioxidant defense system by 

upregulating the expression levels of antioxidant enzymes [64], 

such as glutathione S-transferase (GST), NAD(P)H:quinone 

oxidoreductase (NQO) 1, SOD1, and heme oxygenase (HO) 1, 

through binding to antioxidant response elements (AREs) in their 

promoters [23]. Under physiological conditions, Nrf2 is bound to 

its inhibitory protein, Kelch-like ECH-associated protein 1 

(Keap1), which limits its transcriptional activity in the nucleus. 

Oxidative stress causes Nrf2 to dissociate from Keap1, which 

results in its binding to ARE and the transcription of downstream 

target genes [65]. 
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Some miRNAs were reported to target Nrf2 directly. Zhu et al. 

revealed that miRNA-153 promotes oxidative stress by 

negatively regulating Nrf2 in an in vitro model of Parkinson’s 

disease [66]. The study of Sangokoya et al. shows that increased 

expression of miRNA-144 is associated with reduced Nrf2 levels 

in homozygous sickle cell disease (HbSS) reticulocytes and with 

decreased glutathione regeneration and attenuated antioxidant 

capacity in HbSS erythrocytes [67]. Another study found that the 

downregulation of miRNA-93 elevates Nrf2 expression and 

alleviates reactive oxygen species and cell apoptosis in diabetic 

retinopathy [68]. 

 

Besides directly targeting Nrf2, miRNAs may also target its 

regulators. Cheng et al. demonstrated that miRNA-141 

attenuates UV-induced oxidative stress via targeting Keap1 to 

activate Nrf2 signaling in human retinal pigment epithelium cells 

and retinal ganglion cells [69]. MiRNA-7 represses Keap1 

expression in human neuroblastoma cells, decreases the 

intracellular hydroperoxide level, and increases the level of the 

reduced form of glutathione [70]. Zhang et al. demonstrated that 

miRNA-455-3p activated the Nrf2/ARE signal pathway through 

suppressing Keap1, thereby suppressing oxidative stress and 

promoting osteoblasts growth [71]. Other authors showed that 

miRNA-200a controls Nrf2 activation by target Keap1 in hepatic 

stellate cell proliferation and fibrosis [72]. 

 

SIRT1 Pathway  
 

The increasing number of studies confirms that SIRT1 is an 

important component of cellular responses to oxidative stress 

[73,74]. SIRT1 is a target of various redox-sensitive pathways 

[23]. To induce an antioxidant response, activated SIRT1 

deacetylates multiple targets, including endothelial nitric oxide 

synthase (eNOS), peroxisome proliferator-activated receptor-γ 

coactivator 1-α (PGC1α), p53, Forkhead box O transcription 

factors (FoxO), Nrf2, and NF-κB [65]. In the cell, the 

deacetylation of FoxO1 by SIRT1 increases transcriptional 

activity and upregulates downstream antioxidants such as SOD2 

and catalase [75]. 
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Several miRNAs have been reported to influence oxidative stress 

by directly targeting SIRT1. Downregulation of SIRT1 by 

miRNA-34a promoted vascular smooth muscle cells senescence 

and inflammation in aged mouse aortas [76]. Similarly, miRNA-

217 was identified as an endogenous SIRT1 inhibitor, which 

promotes endothelial senescence. MiRNA-217 was expressed in 

human atherosclerotic lesions and was negatively correlated with 

SIRT1 expression and with FoxO1 acetylation status [77]. Zhao 

el al. showed that miRNA-128-3p aggravated the doxorubicin-

induced liver injury by promoting oxidative stress via targeting 

SIRT1 [78]. The study of Zhu et al. demonstrates a pro-apoptotic 

role of miRNA-195 in cardiomyocytes and identifies SIRT1 as a 

direct target of miRNA-195. The effect of miRNA-195 on 

apoptosis is mediated through the downregulation of SIRT1, 

Bcl-2 (B-cell lymphoma 2), and ROS production [79]. D′Adamo 

et al. identified miRNA-9 as a post-transcriptional regulator of 

SIRT1. MiRNA-9 and SIRT1 levels showed opposite changes in 

chondrocytes, following H2O2 treatment [80]. 

 

NF-κB Pathway  

 
Excessive levels of ROS would also activate NF-κB pathway 

that is a redox-sensitive pathway [81]. NF-κB is present in all 

kinds of cells controlling the transcription of a wide variety of 

genes, including pro-apoptotic and pro-survival genes, pro-

inflammatory cytokines, antioxidant and pro-oxidant enzymes, 

and many others [82]. The mammalian NF-κB family is 

composed of five members: p65 (RelA), RelB, c-Rel, NF-κB1 

(p50 and its precursor p105), and NF-κB2 (p52 and its precursor 

p100), which can form homodimers and heterodimers among 

themselves. The NF-κB proteins are normally sequestered in the 

cytoplasm by a family of inhibitory proteins, including IκB 

family members. The most common activation reactions of NF-

κB are represented by phosphorylation and activation of the IκB 

kinase complex [83]. 

 

One of the most important ways in which NF-κB activity 

influences ROS levels is via increased expression of antioxidant 

proteins such as SOD, glutathione peroxidase, or heme 

oxygenase. Since NF-κB is important in inflammation, some 
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enzymes that promote the production of ROS (e.g., NOX2, 

inducible nitric oxide synthase (iNOS), cyclooxygenase (COX) 

2, or cytochrome P450 enzymes) are also regulated as its targets, 

especially in cells of the immune system [82]. Abnormal NF-κB 

activity is frequently associated with an abnormal level of 

miRNAs, which is found to play critical roles in disease 

progression [84]. 

 

Downregulation of miRNA-155 ameliorates high-glucose-

induced endothelial injury by inhibiting NF-κB activation and 

promoting HO-1 and NO production [71]. Gu revealed that 

miRNA-124 prevents H2O2-induced oxidative stress and 

apoptosis in human lens epithelial cells by suppressing the 

activation of the NF-κB pathway [85]. Results of Wei et al. 

indicated that NF-κB positively regulated miRNA-21 expression 

under oxidative stress, and programmed cell death protein 4 

(PDCD4) was a direct target for miRNA-21 [86]. In another 

study, Xie et al. studied the role of miRNA-146a in the brain of 

chronic type 2 diabetes mellitus (cT2DM) rats. Increased 

inflammation and oxidative stress were associated with brain 

impairment in cT2DM rats, which were negatively correlated 

with miR-146a expression. The expressions of NF-κB p65 and 

its specific modulators were elevated in the brain of cT2DM rats, 

which might be inhibited by miR-146a [87]. 

 

Several other genes and related pathways have been described in 

the literature to be involved in the regulation of oxidative stress 

by miRNAs. Examples of these are MAPK (mitogen-activated 

protein kinase) signaling pathway, TGF-beta (transforming 

growth factor beta) signaling pathway, cell adhesion molecules 

(CAMs), calcium signaling pathway, VEGF (vascular 

endothelial growth factor) signaling pathway, etc. [61]. 

 

MiRNA in Oxidative-Stress-Induced Heart 

Diseases  
 

Oxidative stress plays a crucial role in many cardiovascular 

diseases, like hypoxia, ischemia/reperfusion injury, or heart 

failure [88]. As mentioned before, intracellular ROS are formed 

in normal conditions as the result of normal mitochondrial 
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respiration, but ROS are also produced during reperfusion in 

hypoxic tissue and in association with infection and 

inflammation, leading to pathological conditions of the heart 

[88,89]. One of the effects of ROS accumulation in 

cardiomyocytes is a different expression of noncoding RNAs 

(ncRNAs), subsequently contributing to cell apoptosis and heart 

pathology. Among these ncRNAs, miRNAs are the most 

intensively studied, as they have a huge impact on heart 

condition by inhibiting protein translation or target mRNA 

degradation [16,90,91]. 

 

Cardiac Hypertrophy  
 

Oxidative stress generates many complex cellular changes in the 

heart which force it to adaptation in the form of cardiac 

hypertrophy of ventricles. These adaptations may provide initial 

salutary compensation to the arisen stress, sustained hypertrophic 

stimulation becomes maladaptive, worsening morbidity, and 

mortality risks because of congestive heart failure and sudden 

cardiac death [92]. During hypertrophy in different experiments 

with animal models or in clinical trials, changes in miRNA 

expression were observed—mainly miRNA-1 and -133. Zhao et 

al. demonstrated that their lower levels indicate a significant 

cardiac injury [93]. MiRNA-1 is connected with cardiomyocyte 

growth and hypertrophy most probably through the 

calcineurin/nuclear factor of activated T cell (NFAT) signaling 

pathway inhibition [94,95]. As a previous miRNA-1 case, also 

patients and animals with cardiac hypertrophy have lower levels 

of miRNA-133, probably by regulating antihypertrophic genes 

like guanosine diphosphate–guanosine triphosphate (GDP–GTP) 

exchange protein, or signal transduction kinase cell division 

control protein 42 (Cdc42) [96,97]. 

 

MiRNA-208 belongs to the cardiac-specific miRNAs, and its 

regulation is important in the processes of cardiac remodeling. 

Several studies demonstrated that cardiac hypertrophy is caused 

by switching of adult alpha myosin heavy chain (α-MHC, known 

as Myh6) to fetal beta myosin heavy chain (β-MHC, known as 

Myh7) gene expression. In experimental studies, deletion of 

miRNA-208a, which is encoded in the intron of the Myh6 gene, 
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leads to the decreased expression of the Myh7 gene in response 

to stress and to hypertrophy [88,98]. These results were 

confirmed in the study of Rawal et al., where inhibition of 

miRNA-208a hampers the activation of β-MHC and 

hypertrophic response [99]. 

 

Important miRNAs involved in the cardiac hypertrophy are also 

miRNA-22 (influence phosphatidylinositol-3-kinase (PI3K)-

protein kinase B (AKT)) [100], miRNA-212/132 family (active 

through antihypertrophic FoxO3 transcription factor), or 

miRNA-199 (miRNA-199a targets the pro-autophagic and 

antihypertrophic factor glycogen synthase kinase 3β; miRNA-

199b acts through targeting tyrosine phosphorylation regulated 

kinase 1A (Dyrk1a) gene, involved in the phosphorylation of 

NFAT factors) [101-103]. Other studies dealing with miRNAs 

associated with cardiac hypertrophy observed changed 

expression of miRNA-21, -18b, -195, -199, -29, -22, or -23 

levels [104-107]. 

 

Ischemia/Reperfusion Injury  
 

Cardiac ischemia/reperfusion (I/R) injury involves the damage 

caused by reduced coronary blood flow, causing depletion of 

ATP, reduced partial pressure of oxygen, and production of 

toxins. Reperfusion leads to further damage through generation 

of ROS and a proton gradient across both the sarcolemma and 

the inner mitochondrial membrane [108]. Many miRNAs are 

involved in these processes, either as a result of damage caused 

by ROS generation or directly responsive to ROS. 

 

One of the most promising miRNAs for potential use as a 

diagnostic or therapeutic target is miRNA-24-3p. In a very recent 

study of Xiao et al., decrease expression of miRNA-24-3p during 

induced ischemia/reperfusion injury in mouse hearts and 

decreasing levels of apoptosis of cardiomyocytes caused by ROS 

during ischemia/reperfusion injury after application of miRNA 

mimics were confirmed [109]. In addition to these observations, 

the authors identified the Keap1-Nrf2 pathway as one of the 

possible targets of miRNA-24-3p [109]. 
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Lusha et al. showed that miRNA-144, which is primarily 

connected with the regulation of apoptosis in human cancer 

diseases, is another miRNA with changed expression levels in 

the I/R model through regulation of FoxO1. The authors 

observed in their study reduced infarct size and apoptosis in 

cardiomyocytes during the upregulation of miRNA-144 and 

increased sensitivity to I/R in the situation with depleted 

miRNA-144 [110]. FoxO1 protein is an important transcription 

factor which mediates apoptosis by activating iNOS expression 

in cardiomyocytes [111], and it can be regulated by sirtuin 1 in 

the cardiovascular system [112]. 

 

In another study, Fang and Yeh explored the role of miRNAs in 

cardiomyocyte apoptosis induced by ischemia. They found an 

increased level of miRNA-302 expression induced by 

hypoxia/reoxygenation injury. This aggravated cardiomyocyte 

apoptosis probably by inhibiting antiapoptotic protein myeloid 

cell leukemia 1 (Mcl-1) expression, thereby activating pro-

apoptotic molecules. Based on this data, the authors suggested 

that elevated miRNA-302 levels can be detrimental to cells, but 

decreased levels are beneficial and can lead to effective 

therapeutic intervention [113]. Several publications reveal 

profound effects of myocardial ischemia on miRNA transcript in 

the vessel wall and vascular smooth muscle cells, in particular 

[114-116]. 

 

MiRNA-23a promotes cardiomyocyte apoptosis and myocardial 

infarction induced by I/R through directly suppressing the 

expression of manganese SOD, an important antioxidant for 

scavenging of superoxide [117]. This is one of the endogenous 

enzymes that protects cells from oxidative stress. Wang et al. 

observed that miRNA-1 worsens cardiac oxidative stress by 

post-transcriptional modification of the antioxidant network in 

the I/R injury C57BL/6 mice model. They found that miRNA-1 

reduced the protein levels of antioxidant enzymes glutamate 

cysteine ligase (Gclc), SOD1, and glucose-6-phosphate 

dehydrogenase (G6PD) under oxidative stress conditions [118]. 

Other miRNAs, such as miRNA-130a [119] and miRNA-98 

[120], are investigated to be associated with ROS-related 

cardiomyocyte apoptosis. MiRNA-208a promoted apoptosis and 
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oxidative stress in the I/R injury rat model by regulation of 

protein tyrosine phosphatase receptor type G and protein tyrosine 

phosphatase, non-receptor type 4 [121]. 

 

Another situation of ischemia/reperfusion injury is heart 

transplantations. During the transplantation process in the final 

step, where heart graft is connected to the circulatory system of 

the recipient and when reperfusion of the graft is started, there is 

an excessive production of free radicals, what could lead to graft 

failures and lower long-term survival rate of the patients [122]. 

In several works, more attention is focused on miRNA′s changed 

expression after transplantation, making miRNAs as an ideal 

candidate for biomarkers of transplant rejection [122-124]. Zhou 

et al. found upregulation of miRNA-711, -2137, -705, -5130, -

346, -714, and -744 and downregulation of miRNA-210, -490, -

491, -425, -423-3p, and -532-3p in experiments on C56BL/6 

mouse animal models after heart transplantation in I/R injured 

hearts [122]. 

 

MiRNAs were measured in the samples from endomyocardial 

biopsies (EMB) and blood serum in 30 patients with rejecting 

heart allograft and 30 patients without allograft rejection. 

MiRNA analyzes revealed changed expression of miRNA-10a, -

31, -92a, and -155 in EMB, as well as in blood serum [125]. 

These miRNAs are strongly associated with inflammatory 

processes, as they influenced NF-κB, TNF-α, interleukins -6, -8, 

and -1, monocyte chemoattractant protein-1, eNOS, or vascular 

cell adhesion protein [126-128]. Wei et al. also suggested that 

miRNA-183, -182, and -96 have an important function in the 

regulation of graft rejection probably through regulation of 

FoxO1 expression and could be new potential noninvasive 

biomarkers of allograft rejection in heart transplantation [129]. 

 

All these results suggested the potential role of miRNAs in the 

regulation and adaptation of transplanted allografts and their 

potential use as biomarkers in grafts rejection. 
 

Coronary Artery Diseases (CAD)  
 

CAD is an atherosclerotic disease which is inflammatory in 

nature. Atherosclerosis starts due to the accumulation of 
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lipoproteins in the intima of the coronary vessels. Oxidized or 

modified low-density lipoprotein then attract leukocytes into the 

intima of the coronary vessels, which can be scavenged by 

macrophages, leading to the formation of foamy cells. The 

atherosclerotic plaque starts developing. Cell death or apoptosis 

occurs commonly in the atherosclerotic lesions. The modified 

lipoproteins propagate inflammatory responses. As a result, 

obstruction of blood flow occurs, and this leads to a mismatch 

between myocardial oxygen demand and supply [130]. 

 

Endothelial cell apoptosis under oxidative stress plays a critical 

role in the initiation and progression of atherosclerosis [131-

141]. Li et al. observed that overexpression of miRNA-210 

caused inhibition of apoptosis and reduction of ROS level in 

human umbilical vein endothelial cells (HUVECs) treated with 

H2O2 and also downregulation of caspase levels. This study leads 

to the conclusion that miRNA-210 could have a role in the 

protection against oxidative-stress-induced apoptosis in 

HUVECs [131]. 

 

MiRNA-24 is highly expressed in the vessel wall and changes of 

its expression are connected with dysfunction and injury of 

vascular endothelial cells [132]. It is believed that miRNA-24 

participates in many pathophysiological processes including I/R 

injury or vascular oxidative stress [134-137]. In an experimental 

study by Zhang et al., miRNA-24 was upregulated, and it has a 

supportive effect on vascular endothelium repair by attenuating 

oxidative-stress-induced damage of endothelial cells. In this 

case, miRNA-24 regulated the Nrf2/HO-1 signaling pathway 

indirectly by regulating of Keap1 after influencing of O-linked 

β-N-acetylglucosamine transferase gene (Ogt). On the other 

hand, authors confirmed that miRNA-24 affects the expression 

of SOD, malondialdehyde, and glutathione peroxidase [137]. 

 

MiRNA-92a overexpression impairs endothelial function and 

suppresses HO-1 expression in endothelial cells. Inhibition of 

miRNA-92a attenuates oxidative stress and improves endothelial 

function through enhancing HO-1 expression and activity in 

diabetic mouse aortas [138]. Yamac et al. observed markedly 

lowered expression of miRNA-199a in patients with coronary 
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artery disease [139]. In parallel, they also showed the induction 

of cardioprotective protein SIRT1, a potential target of miRNA-

199. Significantly increased expression of miRNA-146a was 

observed in patients with acute coronary syndrome. This miRNA 

is connected with the inflammatory pathway by regulating NF-

κB [140]. According to O´Sullivan et al., miRNA-93-5p belongs 

to one of the strongest predictors of coronary artery disease when 

its expression was significantly upregulated in the patients with 

CAD, most likely through modulation of ATP-binding cassette 

A1 (ABCA1) gene [141]. ABCA1 plays an important role in 

cholesterol homeostasis and atherogenesis, and it could be 

reduced by oxidative stress [133]. 

 

Heart Failure  
 

A complex syndrome resulting from structural or functional 

cardiac disorders, leading to disability of ventricle to fill or eject 

blood, is called heart failure [142-144], and it is considered to be 

one of the leading cause of morbidity and mortality worldwide 

[142,145-148]. Development of heart failure depends on many 

circumstances in the organism, but one of the key 

pathophysiological pathways for it is oxidative stress [149-151]. 

According to a lot of animal and human studies, multiple 

miRNAs are changed in models of heart failure, including 

miRNA-199b, -195, -100, -133, -24, and -208 [94,152-156]. 

Upregulated levels of miRNA-199b were measured during heart 

failure and appeared to target the calcineurin/NFAT pathway. It 

was proved that this calcineurin/NFAT pathway is activated after 

oxidative stress stimuli [157,158]. In the in vivo experiments, 

inhibition of miRNA-199b caused normalization of the 

expression of Dyrk1a, a reduction of nuclear NFAT activity, and 

inhibition of hypertrophy and fibrosis in mouse models of heart 

failure [101,159]. Changed expressions of miRNA-1, -214, -29b, 

-342, -7, -107, -126, -125, -122, -423-5p, -320a, -650, -1228, -

662, -583, -3175, -21, -22, and -92b have been shown in other 

studies of heart failure [106,152,156,160-163]. 

 

A brief review of selected miRNAs included in the 

cardiovascular diseases caused by oxidative stress is provided in 

Table 1. 
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Table 1: List of selected miRNAs with function in oxidative-stress-induced cardiovascular diseases.  

  

Disease miRNA Expression Target References 

Cardiac hypertrophy miRNA-1 Downregulated Mef2a; Gata4 [93,94,95] 

miRNA-133 Downregulated GDP–GTP exchange 

protein; Cdc42 

[93,96,97] 

miRNA-208a Downregulated Myh7 [18,98,99] 

Ischemia/reperfusion 

injury 

miRNA-24-3p Downregulated Keap1/Nrf2 [109] 

miRNA-144 Downregulated FoxO1 [110,111] 

miRNA-302 Upregulated Mcl-1 [113] 

miRNA-23a Upregulated MnSOD [117] 

Heart transplantation miRNA-10a Downregulated NF-κB [126] 

miRNA-31 Upregulated TNF-α [127] 

miRNA-92a Upregulated Integrin a5, S1P1, 

MKK4, eNOS 

[128] 

miRNA-155 Upregulated T-cell receptor, IFN 

receptor 

[164] 

Coronary artery 

diseases 

miRNA-24 Downregulated Ogt, Keap1/Nrf2 [132,134,135,136,137] 

miRNA-92a Upregulated HO-1 [138] 

miRNA-199a Downregulated SIRT1 [139] 

Heart failure miRNA-199b Upregulated calcineurin/NFAT [101,157,158,159] 

miRNA-21 Upregulated natriuretic peptide B [156,163] 

 

Mef2a—Myocyte-specific enhancer factor 2A, Gata4—Transcription factor GATA-4, GDP–GTP exchange protein–

guanosine diphosphate–guanosine triphosphate exchange protein, Cdc42—Cell division control protein 42, Myh7—beta 

myosin heavy chain, Keap1/Nrf2—Kelch-like ECH-associated protein 1/Nuclear factor erythroid 2-related factor 2, 

FoxO1–Forkhead box protein O1, Mcl-1—Myeloid cell leukemia 1, MnSOD—manganese-dependent superoxide 

dismutase, NF-κB–nuclear factor kappa B, TNF-α–tumor necrosis factor alpha, S1P1–Sphingosine-1-phosphate receptor 

1, MKK4—Mitogen-activated protein kinase kinase 4, eNOS—Endothelial nitric oxide synthase, INF receptor–

interferon receptor, Ogt—O-linked β-N-acetylglucosamine transferase, HO-1—Heme oxygenase 1, SIRT1—sirtuin 1, 

NFAT—Nuclear factor of activated T cells. 
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Future Perspectives of Using MiRNA in Disease 

Diagnosis and Treatment  
 

Since 2001, miRNAs have been recognized as biomarkers and 

possible therapeutic targets for the diagnosis and treatment of 

diseases [165]. One of the biggest advantages for using miRNAs 

as biomarkers is their stability under many different conditions. 

MiRNAs can be stored at room temperature, frozen, or thawed 

[166]. Bioavailability of miRNA is another great advantage. 

MiRNAs can be isolated from various biological materials, like 

from peripheral blood, fresh and frozen tissues, or formalin-

fixed, paraffin-wax-embedded samples, but also from saliva, 

epithelium of the skin, or hair [167,168]. Difficulties in the use 

of therapeutically altering miRNAs lie in their non-specificity— 

single miRNA can target many genes and influence more than 

one gene expression, so they could affect also other pathways in 

the organisms [169]. MiRNAs impose a relatively modest effect 

on their target, reflecting that individual mRNAs are targeted by 

multiple miRNAs, while the cellular proteome might be able to 

compensate the absence of a single miRNA [170]. 

 

Manipulation of RNA using miRNA mimics and antagomirs 

holds significant therapeutic potential for treating a variety of 

diseases. With recent technological advances, identification and 

validation of potential therapeutic miRNA targets are readily 

available [165]. Treatment of diseases by modulation of selected 

miRNAs in the organisms is based on two approaches. First, 

miRNA mimics is an approach for gene silencing due to 

generating synthetized artificial double-stranded miRNA-like 

RNA fragments. These molecules are able to bind to target 

mRNA and suppressed genes [171]. The second approach uses 

antagomirs, chemically designed oligonucleotides. These 

oligonucleotides specifically inhibit target miRNA by binding to 

them, which leads to reduction of RISC activation and to 

upregulation of genes [172,173]. MiRNAs could be modulated 

also by miRNA sponges (target mimicry), masking, and erasers. 

MiRNA sponges contain a binding site for the miRNA family, 

leading to the blocking of the activity of miRNAs [174,175]. 

Masking is based on the occupation of the binding site on target 

mRNA by oligonucleotides [176]. Erasers are oligonucleotides 
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complementary to specific miRNA, leading to inhibition of its 

function [177]. However, delivery of anti-miRNAs and miRNAs 

in vivo may prove to be challenging [165]. 

 

Conclusions  
 
Oxidative stress is one of the important contributing factors in 

cardiovascular disease genesis and development. Excessive ROS 

production has a significant impact on the pathogenesis of 

cardiovascular diseases related to atherosclerosis, 

cardiomyopathy, ischemia/reperfusion, and heart failure. 

Published literature highlights the increasing importance of 

studying the role of redox-sensitive miRNAs to identify more 

effective biomarkers and develop better therapeutic targets for 

oxidative-stress-related diseases. It is necessary to define the 

roles of individual miRNAs and their important targets, to 

determine their potential for possible diagnosis/treatment of 

cardiovascular disorders. Although a number of targets of 

oxidative-stress-responsive miRNAs have been identified, e.g., 

Nrf2, SIRT1, and NF-κB, future studies are still needed to 

determine further potential targets and their links to 

cardiovascular disease. MiRNA may be a promising novel tool 

and means in the clinical diagnosis, prognostic evaluation, and 

even therapeutic intervention of oxidative-stress-related CVD. 

The knowledge of the crosstalk between miRNAs, ROS, and 

cardiovascular diseases can contribute to new therapeutic 

approaches based on the suppression of ROS effects, with the 

potential to ameliorate or prevent the progression of 

cardiovascular diseases. However, several studies are still 

required to validate the present findings before the application of 

miRNA in clinical practice. 
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