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Abstract  
 

The intent of shielding functions in delayed detached-eddy 

simulation methods (DDES) is to preserve the wall boundary 

layers as Reynolds-averaged NavierïStrokes (RANS) mode, 

avoiding possible modeled stress depletion (MSD) or even 

unphysical separation due to grid refinement. An entropy 

function fs is introduced to construct a DDES formulation for the 

k-ɤ shear stress transport (SST) model, whose performance is 

extensively examined on a range of attached and separated flows 

(flat-plate flow, circular cylinder flow, and supersonic cavity-

ramp flow). Two more forms of shielding functions are also 

included for comparison: one that uses the blending function F2 

of SST, the other which adopts the recalibrated shielding 

function fd_cor of the DDES version based on the Spalart-

Allmaras (SA) model. In general, all of the shielding functions 

do not impair the vortex in fully separated flows. However, for 

flows including attached boundary layer, both F2 and the 

recalibrated fd_cor are found to be too conservative to resolve the 

unsteady flow content. On the other side, fs is proposed on the 

theory of energy dissipation and independent on from any 

particular turbulence model, showing the generic priority by 

properly balancing the need of reserving the RANS modeled 

regions for wall boundary layers and generating the unsteady 

turbulent structures in detached areas.  
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Introduction  
 

Detached-eddy simulation (DES) takes advantage of the 

Reynolds-averaged NavierïStrokes (RANS) method where mean 

flow is attached and steady (e.g., walls), while offering, like 

large-eddy simulation (LES), the sensitivity to capture unsteady 

flow phenomena in areas of physical interest such as wakes or 

recirculation zones [1ï5]. Although this strategy is beyond the 

computational cost of a steady RANS calculation, it reveals 

nearly as much information about the flow dynamics as LES. For 

this reason, DES has been serving as a promising way out of the 

limitation detaining LES from being applied to high Reynolds 

numbers in the past decades. While the idea of the original DES 

model is straightforward, DES is nevertheless one of the more 

difficult models to use in complex applications. A major concern 

is that the interface between the RANS and LES mode greatly 

depends on the grid spacing. The transition from RANS to LES 

mode would be located within the boundary layer, if the mesh is 

refined with grid spacing is much smaller than the boundary-

layer thickness. The premature switch from RANS to LES mode 

will provide insufficient modeled Reynolds stresses, resulting in 

modeled stress depletion (MSD) and even non-physical 

separation [6,7]. To alleviate this deficiency, Menter and Kuntz 

[8] used the blending function F2 of the k-ɤ shear stress transport 

(SST) model [9] to ñshieldò the boundary layer, by which they 

implied ñpreserve RANS modeò, or ñdelay LES functionò in 

2004 (SST-DDES-F2). As a derivative of this proposal, Spalart et 

al. [7] proposed a DDES variant based on the SpalartïAllmaras 

model [10] in 2006 (SA-DDES), by constructing a generic 

shielding function fd to detect the boundary-layer region and 

ñpreserve RANS modeò. In turn, Gritskevich et al. [11,12] 

employed fd to consolidate a ñstandardò SST-DDES approach 

(SST-DDES-fd_cor) since the blending function F2 is found to be 

relatively conservative. In their work, fd was simply modified 

with a constant Cd1 increasing from 8 to 20, based on 
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recalibrations in several flow cases rather than adequate physical 

negotiations. Recently, Zhao et al. [13] deduced an entropy 

function fs to distinguish the turbulent boundary layer from the 

external flow. This function is concluded to be general, 

independent of inflow conditions or any specific turbulence model. 

With this function, a new version of SA-based DDES (SA-SDES) is 

proposed. As aforementioned, due to the different combinations of 

baseline RANS model and shielding function, those DDES variants 

have been proposed with rather different characteristics, making 

model selection and interpretation of results challenging.  

 

As a first step, this article is aimed at avoiding the ambiguity of 

numerous shielding functions for the SST-based DDES method. 

In particular, the performance of entropy function fs is evaluated 

by promoting a novel SST-SDES method. Focusing on this 

ambition, this paper is organized as follows: Section 2 presents 

constructions of the two-equation SST model and SST-based 

DDES methods employed in the current study. Especially, the 

newly developed SST-SDES is described in detail. Section 3 is 

dedicated to the validation of the SST-SDES method. 

Comparisons with SST-DDES-F2 and -fd_cor are also provided, 

along with the merits and deficiencies of the above methods 

discussed. In this part, the effects of the baseline RANS model 

are preliminarily discussed. Finally, Section 4 gives the 

conclusions and future directions of this research.  

 

Numerical Methods  
 

The numerical algorithm for solving the mean flowfield is 

essentially the same as presented in Reference [14]. The time-

dependent, compressible Reynolds-averaged NavierïStokes 

equations are formulated in a generalized coordinate system. The 

5th order weighted essentially nonoscillatory (WENO) scheme 

[15] is used to discretize the inviscid components, while the 4th 

order central differencing [16] is employed for the viscous terms. 

Time integration is achieved by dual-time stepping with 

sufficient sub-iterative convergence, which results in a second-

order accuracy. The two-equation SST turbulence model is 

chosen as the base for the construction of the following DDES 

variants. This model uses a parameter F1 to switch from k-ɤ to k-
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Ů, which is considered as one of the popular two-equation RANS 

models, particularly for moderate separation prediction [9]. 
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F1 is equal to 0 away from the surface (k-Ů model), and switches 

over to 1 inside the boundary layer (k-ɤ model). 

The turbulent eddy viscosity is defined as follows 
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in which F2 is a second blending function and behaves similarly 

to F1, defined by 
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The source terms in the model are given by 
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where lk-ɤ acts as the turbulent length scale of the SST model. 

The model constants used in SST model are defined as a1 = 0.31 

and ɓ
*
 = 0.09. The remaining variables are obtained by blending 

the coefficients in the k-ɤ model (ű1) with those of the k-Ů model 

(ű2) as follows  
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SST-DDES-F2  

 

For fine grids, the switch from RANS to LES mode in the pure 

DES strategy is found to take place somewhere inside the 

boundary layer and produce a premature (grid-induced) 

separation. In order to reduce grid influence, SST-DDES-F2 was 

first proposed with the help of underlying zonal formulation of 

the SST model. The turbulent length scale lk-ɤ is replaced by 

k-ɤ DES max SST
min( , / (1 ))l l C F= D - with Fsst = F1 or F2. In this work, 

we chose F2 as the shielding function following Reference 

[6,17]. Since SST model is based on a blending of k-ɤ and k-Ů, 

Strelets [18] calibrated the model by running both the k-ɤ and k-

Ů models on isotropic turbulence. This leads to a blending 

constant as below 

 

DES 1 1
(1 ) 0.61 0.78.C F F= - ³ + ³           

(6) 

 

ȹmax is the largest grid spacing defined by ȹmax = max(ȹx, ȹy, 

ȹz).  

 

The default of SST-DDES-F2 is the relatively conservative F2 

function, which would suppress the formation of resolved 

turbulence in detached flow regions not sufficiently removed 

from walls (e.g., backward facing step flow, tip gap flows in 

axial turbines, etc.). This is the motivation for the development 

of SST-DDES-fd_cor. 
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SST-DDES-fd_cor  

 

With the same ñshieldingò purpose, Spalart et al. [7] designed a 

function fd to ensure that the attached boundary layers are treated 

in RANS regardless of the grid resolution by using the quantity 
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where vt is the kinematic eddy viscosity, v is the molecular 

viscosity, Ui,j represents the velocity gradients, ə = 0.41 is the 

von Karmanôs constant, and d is the distance to the wall. The 

parameter rd is slightly modified relative to the SA definition, 

whose value equals 1.0 in the logarithmic layer, and falls to 0 

gradually towards the exterior edge of the boundary layer. This 

quantity is used in the function: 

 

 
3

d d1 tanh([8 ] ),f r= -            
(7) 

 

which is designed to be 0 in the boundary layer and 1.0 

elsewhere. 

 

Since fd depends only on the eddy viscosity and the wall 

distance, it can therefore, in principle, be applied to any eddy 

viscosity based DDES model. Whereas the shielding function fd 

was considered generic, it was essentially calibrated for a one-

equation SA model. Gritskevich et al. [11,12] proved that a 

recalibration is required if the same function is to be applied to a 

two-equation SST model. The original shielding function fd is 

modified as below: 

 

 
3

d_cor d1 tanh([20 ] ).f r= -
                

(8) 

 

In addition, the SST-DDES-fd_cor approach was consolidated with 

the length scale 

 

k-ɤ d_cor k-ɤ DES max
max(0, ).l l f l C= - - D

                  
(9) 
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From the comparison between Equations (10) and(11), only one 

empirical constant is increased from 8 to 20. It may be 

questionable since the modification depends on recalibrations 

rather than physical negotiations. The essential parameter rd is 

not changed, which is relative to the SA definition. For the above 

reasons, the performance of SST-DDES-fd_cor will be further 

investigated in our work. 

 

SST-SDES  
 

Different from F2, fd and fd_cor, which originate from turbulence 

models, the entropy function fs is initially proposed to distinguish 

the turbulent boundary layer from the point of energy dissipation 

[13]. The basic hypothesis is that the turbulent boundary layer 

could be defined as the region where the local entropy generation 

rate caused by viscous dissipation is the most significant [19]. A 

novel entropy concept, named entropy increment ratio 
viss , was 

proposed as follows: 
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where 
vissD  means the entropy increment caused by the viscous 

dissipation. The derivation process of 
vissD  could be referred to 

[13,20], and the final form is presented as below: 
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caused by wall-heat convection has been neglected in Equation 

(14) for numerical consideration, which may reduce the 

precision of 
vissD  at the isothermal wall. sD  is the state function 

of entropy obtained from Gibbs equations. For compressible 

flows, sD  has the formation as follows: 
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g
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and, in incompressible flows, sD  can be expressed by 
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When the potential flows pass the wall, the mechanical energy is 

dissipated to zero due to the viscous frication. Therefore, the 

value of 
vissD  varies by orders of magnitude from the low-speed 

flows to hypersonic flows at the wall. Based on the modeling 

convenience, 
vissD  is normalized by the maximum entropy 

increment 
maxsD , which is approximated in adiabatic boundary-

layer flows and given by 
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The remaining variables in Equations (14)ï(17)are cɜ = R/(ɔ ī 1) 

the specific heat at constant volume, R the gas constant, ɔ = 1.4 

the specific heat ratio, and T, p and ɟ the local temperature, 

pressure and density, respectively. 
( 1)

R
k

Pr

mg

g
=
-

 is the thermal 

conductivity and Pr = 0.7 is Prandtl number in laminar flow, 

while t

t

t( 1)

R
k

Pr

mg

g
=
-

 and Prt = 0.9 are variables in turbulent 

flows. Subscript Ð means the quantity in the far field. 

 

With 
vissD  normalized by 

maxsD  as Equation (13) shows, 
viss  

represents the viscous dissipation rate per unit mechanical 

energy, whose value approaches unity towards the wall with a 
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consistent trend. The range of boundary layer is well represented 

by 
viss  > 0 [13]. Moreover, in order to avoid the disturbance of 

entropy increase caused by shocks and detached vortex in 

complex flows, the entropy function fs is proposed to confine the 

predicted turbulent boundary layer near the wall, 

 

( )3s vis s1.0 tanh /f s l= -
                           

(10) 

 

where ls is the length-scale ratio, which is designed to be less 

than 1.0 in the boundary layer and increase quickly in the 

external flows. The formation of ls is as below 
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in which Cs = 0.12 and CDES = 0.65 are empirical constants. 

f(a1,a2) is an anisotropic function recommended by Lilly [21], 

which is a function of grids aspect ratios 
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where 
max/ , 1,2i ia i=D D = and ȹi is one of the two shorter edges 

in the three directions. 

 

Then, the SST-SDES approach could be designed with the length 

scale 

 

k-ɤ s k-ɤ DES max
max(0, ).l l f l C= - - D                              

(12) 

 

As mentioned above, the turbulent length scales of the 

above DDES methods are listed in  

Table. Note that, SST-DDES-F2 would automatically choose the 

smaller one by comparison of the length scales of the 

corresponding RANS and LES mode. For the left, they may 

adopt a combination of the length scales of the two modes, 

where the value of the corresponding shielding function lies in 
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the range 0ï1. Moreover, each shielding function could only 

decide the RANS modeled region near the wall. In the farfield 

where its value equals 1, the alternation of RANS and LES mode 

depends on the magnitudes of lk-ɤ and CDESȹ.  

 
Table 1: The turbulent length scales in SST-based DDES methods. 

 

Strategies Turbulent Length Scale 

RANS Mode Transition Mode LES Mode 

SST-DDES-F2 lk-ɤ ---*  CDESȹmax/(1 ī F2) 

SST-DDES-fd_cor lk-ɤ lk-ɤ ī fd_cor max(0, lk-ɤ ī CDESȹmax) CDESȹmax 

SST-SDES lk-ɤ lk-ɤ ī fs max(0, lk-ɤ ī CDESȹmax) CDESȹmax 
 

* there is no transition mode in SST-DDES-F2. 

 

Results and Discussion  
Flat Plate Flow  
 

The performances of the above DDES methods are preliminarily 

investigated on a zero-pressure-gradient boundary-layer flow 

with Re = 2 × 10
6
/m. All cases are computed in RANS mode 

with the DDES option activated. Similar to the procedure 

adopted by Reference [7], we also present three types of grids 

with different mesh resolutions in order to evaluate the grid 

sensitivity of the above DDES methods. Figure displays the 

sketch maps of three grid densities in a boundary layer. In a 

Type I grid, the wall-parallel spacing ȹx and ȹz set ȹ via the 

max formula and exceed ŭ, so that the DES length scale is on the 

ñRANS branchò throughout the boundary layer. The shielding 

functions of DDES methods have no effect in a Type I grid, and 

all the results are consistent with those of SST (Figure). 

However, the modified shielding function fd_cor turns out to be 

overly conservative as it covers double the boundary-layer 

thickness, while both shielding functions F2 (actually 1 ī F2 in 

current notation) and fs accurately denote the whole layer 

(Figurea). Such a conservative shielding function fd_cor will 

inhibit the main DES functionality by suppressing the LES mode 

for resolved turbulence. The resolution of Type II grid ranges 

between the classical values used in LES and RANS simulations 

(with a target value of the grid-spacing equal to one tenth of the 

boundary-layer thickness). With this ambiguous grid, the RANS-

modeled range (dw < CDESȹ) in SST-DES [18] only holds 18% of 
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the boundary layer (Figurea), resulting in underestimating the 

eddy viscosity by almost 60% (Figureb) and the velocity profile 

slightly departing from that of SST at the log-law region 

(Figurea). This premature switching inside the boundary layer to 

the LES mode is completely eliminated for all the DDES 

methods, whereas the performances of the inherent shielding 

functions are similar to those in a Type I grid (Figurea). For a 

Type III LES grid, all spacings are much smaller than the 

boundary-layer thickness ŭ. Since the LES region where 

CDESȹmax < lk-ɤ occupies the bulk of the boundary layer, the 

velocity profile of SST-DES further departs from that of SST, 

along with the eddy viscosity being underestimated by 87% 

(Figure). All DDES methods could predict consistent results 

with those of SST. Compared with the performances in Type I 

and II grids, the modified fd_cor predicts a more accurate range of 

ŭ (fd_cor = 0), but rises to 1 more slowly than F2 and fs. 

Additionally, the original fd is introduced in SST-DDES (SST-

DDES-fd) and the results are also shown in Figure. The original 

one increased to be 1 in a much narrower domain (Figurea), 

which results in a less-reliable shielding capability. The SST-

DDES-fd underestimates the eddy viscosity by about 40% 

(Figureb). This deficiency was also revealed in References 

[11,12].  

 

From the discussion above, while the shielding function fd of SA-

DDES was considered generic [7], it is essentially calibrated for 

SA model. When it is applied into the SST-based DDES, the 

original fd proves to be less reliable, while the recalibrated fd_cor 

recommended in [11,12] turns out to be much too conservative. 

Compared with the performance of F2, the entropy function fs 

increases to 1 more quickly towards the edge of boundary layer, 

which is favorable for the safe protection of the LES resolved 

region.  
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Figure 1: Grids in a boundary layer. Top Type I, natural DES; left Type II, 

ambiguous spacing; right Type III, LES. ŭ is the boundary-layer thickness. 

Assume ȹz å ȹx. 

 

 
 

(a) 

 
 

(b) 

 

Figure 2: Comparisons of SST-based DDES results in Type I grid. (a) Velocity 

and shielding functions distributions; (b) Eddy viscosity distributions. 
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(a) 

 

 
 

(b) 

 

Figure 3: Comparisons of SST-based DDES results in Type II grid. (a) 

Velocity and shielding functions distributions; (b) Eddy viscosity distributions. 

 

 
 

(a) 
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(b) 

 

Figure 4: Comparisons of SST-based DDES results in Type III grid. (a) 

Velocity and shielding functions distributions; (b) Eddy viscosity distributions. 

 

 

 

 
 

(a) 
 

 
 

(b) 

 

Figure 5: Performances of shielding function fd and its corrected version fd_cor 

on the flat plate flow when applied by SST-based DDES. (a) Velocity and 

shielding functions distributions; (b) Eddy viscosity distributions.  
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Circular Cylinder Flow  
 

The flow past a circular cylinder at Reynolds number 3900 based 

on the cylinder diameter D is chosen for the intended 

investigations. This kind of large separated flow is considered to 

be the primary application of DES variants. The size of the 

integration domain for the O-type grid is 20D in the cross-

section plane [22], and the grid extends ˊD/2 in the z direction 

(Figure). The grid is clustered near the cylinder and the spacing 

is increased in a proper ratio. The distance of the first grid line to 

the wall is 10
ī5

, which corresponds to a y
+
 less than 1.0. The 

dimensions in the order ñstreamwise Ĭ transverse Ĭ spanwiseò 

are 137 × 137 × 41, which had been proved to be refined enough 

for DES simulations [23]. Periodic boundary condition was 

employed at the boundaries in the spanwise direction and no-slip 

boundary condition was prescribed at the surface of cylinders. 
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(a) 

 
 

(b) 

 
Figure 6: X-Y grid for circular cylinder at Re = 3900. (a) Global map; (b) Local 

map around the wall. 

 

Three calculations were carried out on the same grid. The time-

averaged distributions of shielding functions in the three DDES 

methods are compared in Figure. As pointed out by Zdravkovich 

[24], when the Reynolds number varies from 350 to 2 × 10
5
, the 

flow past a circular cylinder is in the transition-in-shear-layers 

region, in which the separated boundary layer remains laminar, 

while a transition takes place along the free-shear layers with 

shedding vortexes leaving the body as large-scale turbulent 

vortices. Therefore, a little RANS-modeled region is needed 

before the separation point. However, both SST-DDES-F2 and -

fd_cor preserve an obvious RANS region in front of the cylinder 

which seems redundant (Figurea,b). Comparatively, the 
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shielding function fs employed by SST-SDES is sensitive to the 

local flow topology and could detect the boundary layer more 

physically (Figurec). 

 

 
 

(a) 

 
 

 
(b) 

 
 

(c) 

Figure 7: Distributions of corresponding shielding function inherent in SST-

based DDES methods around the cylinder wall. (a) 1-F2 in SST-DDES-F2; (b) 

fd_cor in SST-DDES-fd_cor; (c) fs in SST-SDES. 
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Table presents the values of global flow quantities in all 

cases and the experiment. According to Bearman [25], the mean 

recirculation length /rL D  of circular cylinders is inversely 

proportional to the mean base pressure coefficient bCp- , whereas 

the mean drag coefficientDC is proportional to
pbC- at subcritical 

Reynolds numbers. Following this rule, one can easily 

understand the relationship between Figure Figure and  

Table. As Figure shows, the profile of SST-DDES-F2 is 

notably below the experimental result, related with the shortest 

recirculation area (Figure) and the largest mean drag coefficient 

among the three methods ( 

Table). Compared with other results, the behavior of SST-

DDES-F2 tends to be that of unsteady RANS (URANS) in some 

sense [18], as it reserved more regions for RANS mode. In 

contrast, SST-SDES predicts the most convenient results with 

the experimental data, with the longest recirculation area and the 

largest Strouhal number. After all, considering the experimental 

data and LES results with 961 × 960 × 48 grid resolution [28], all 

three DDES strategies could give convenient mean and 

fluctuating velocity distributions in the wakes, proving the 

capability to solve the large-separated flows (Figure Figure).  

 
Table 2: Global flow quantities computed by four DES strategies. 

 
Strategies Global Flow Quantities 

/rL D  DC  St 
bCp-  

SST-DDES-F2 0.92 1.18 0.2031 1.144 

SST-DDES-fd_cor 1.05 1.14 0.2042 1.079 

SST-SDES 1.32 1.12 0.2048 0.957 

Experiment [26] 1.33 ± 0.05 0.99 ± 0.05 0.215 ± 0.005 0.88 ± 0.05 

 
* rL : the time-averaged formation length based on the location of zero 

averaged-velocity, D: cylinder diameter, DC : time-averaged drag coefficient, 

St: Strouhal number, bCp- : back-pressure coefficient. 
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Figure 8: Pressure coefficient around the cylinder surface. (Experiment is from 

Reference [27]). 

 

 
 

Figure 9: Mean streamwise velocity along the centerline. (Experiment is from 

Reference [27]). 
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Figure 10: Mean streamwise velocity at three locations in the near wake. 

(Experiment is from Reference [27]). 

 

 
 
Figure 11: Streamwise velocity fluctuations at three locations in the near wake. 

(Experiment is from Reference [28]). 

 

Cavity-Ramp Flow  
 

The cavity-ramp configuration could be considered as a 

simplified scramjet or ramjet for the next-generation hypersonic 

vehicles, which may be used to provide flame stabilization. The 

dominant features of the flow are the free-shear layer over the 

cavity and a large recirculation zone behind the cavity leading 

edge, which should be resolved in LES mode of DES variants. 
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After reattachment, the flow forms the turbulent boundary layer 

on the ramped portion of the cavity, where the RANS mode is 

needed ( 

Figure). Settles et al. [29] had carried out corresponding 

experiments, and the nominal inflow Mach number, pressure, 

and temperature are 2.92, 21,240 Pa, and 95.37 K, respectively. 

The three-dimensional grid used for this case consists of two 

blocks, containing 37 × 85× 33 points upstream of the cavity and 

154 × 108 × 33 points downstream of the leading edge of the 

cavity. The grid was clustered to all solid surfaces, while the 

free-shear layer and reattachment regions were paid particular 

attention. It should be noted that this grid resolution is almost the 

same as Reference [30], which was proved to be refined enough 

for DES-like methods but were too coarse to properly capture the 

eddy structure by LES. A no-slip adiabatic condition was applied 

to the surface, and periodic boundary conditions were employed 

in the z direction. Initial conditions for DDES simulations are 

obtained by solving the flowfield with the corresponding RANS 

model. This case is also employed to evaluate the performances 

of SA-based DES and SDES [13]. 

 

 
 

Figure 12: Flow structures for the cavity-ramp, depicted by time-averaged 

Mach number contours. 
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Figure 13: Grid construction in the x-y plane. 

 

Figure presents the time-averaged distribution of the shielding 

function inherent in corresponding DDES method. All of the 

three DDES methods could preserve a visible RANS-modeled 

region along the wall, whereas both SST-DDES-F2 and -fd_cor 

mistakenly shield the whole cavity as the boundary layer. 

Moreover, the inlet distribution of fd_cor fluctuates due to Ui,j å 0 

outside of the inflow boundary layer. On the other side, SST-

SDES protects a reasonable extent of the boundary layer as 

RANS mode in the cavity and after the reattachment along the 

ramp (Figurec). Specially, the distribution of entropy function fs 

of SST-SDES is almost the same as the one inherent in SA-

SDES, proving the independence of fs on any particular 

turbulence model. 

 

 
 

(a) 
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(b) 

 

 

 
 

(c) 

 
Figure 14: Distributions of corresponding shielding function inherent in SST-

based DDES methods around the cavity-ramp wall. (a) 1-F2 in SST-DDES-F2; 

(b) fd_cor in SST-DDES-fd_cor; (c) fs in SST-SDES. 

 

Figure compares the time-averaged eddy viscosity distributions 

of the three DDES methods. Since the cavity is treated in RANS 

mode by both SST-DDES-F2 and -fd_cor, there are more 

prominent levels of eddy viscosity than the result of SST-SDES. 

The entropy function fs reliably indicates the development of the 

reattached boundary layer along the ramp, resulting in a more 

reasonable eddy viscosity distribution. The instantaneous vortex 

structures are visualized in Figure, using the Q-criterion. The 

initial growth of the shear layer is dominated by Kelvinï

Helmholtz structures, which are initially two-dimensional, and 
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quickly break down into small vortices in the cavity. After 

reattachment, elongated horseshoe vortices are observed in the 

ramp portion, the size of which is on the order of half the domain 

width in the z direction [30]. Due to the abundant eddy viscosity 

in the cavity (Figurea,b), the turbulent fluctuations inherent in 

the separated flow are greatly suppressed, leading to fewer 

vortex structures (Figurea,b). However, for SST-SDES, the 

turbulence-resolving capability in the separation region is not 

impaired (Figurec), as the cavity is indicated as LES mode by 

entropy function fs.  

 

 
 

(a) 

 

 
 

(b) 

 






